
Toward a Standard for Cross-compilers and
Embedded Systems

Elizabeth D. Rather
FORTH, Inc.
111 N. Sepulveda Blvd., Suite 300
Manhattan Beach, CA 90266

ABSTRACT

One of the agenda items for ANS Forth involves addressing the issues raised by embedded
systems and cross-compilers. This is worthwhile, as such systems represent a large body of
Forth usage.

In 1996, FORTH, Inc. and MPE developed a joint set of standards for such systems. These
have been used in the Europay project to program eight smart card terminals with three
different kinds of CPUs ranging from 8051s to 68Ks, and are incorporated in our SwiftX
cross-compilers which are now used by over fifty different customers on six different
processor families. This represents a good body of experience to form the basis for a
proposal.

1. Issues

The following issues need to be addressed:

• What needs to be in the target? On many embedded systems it’s inappropriate to have a
full dictionary, heads, compiler, interpreter, etc., resident in the target. Is it an “ANS
Forth System” if the combination of host and target provide all CORE words?

• What about managing memory spaces? Presently, ANS Forth’s “dictionary” only
contains data, and the rules for pre-initializing data spaces are unclear. Embedded
systems have to worry about ROM and RAM, on-board and external memory, etc.

• How about managing scope/vocabulary issues? If the cross-compiler itself is written in
Forth, as many are, how do you distinguish the underlying system’s Forth words from
the versions that construct the target, or are only executable in the target?

2. Host and Target Roles and Functions

ANS Forth contains two recognizable sets of functionality:

1. Words that build and manage definitions and data structures, and

2. All other executable words.

In a cross-development environment, the first set may be confined to the host, so I will call
these Host functions. The second set, normally built by the first set, I shall call Target
functions.

Host functions include all defining words, “syntactic elements” such as IF and DO, words
that put things in data structures such as , (comma), and DOES>. Target functions include
normally executable words like + and DUP.

A conventional Forth integrates these two. A cross-development system segregates them,
and manages them quite distinctly. There may be versions of target words that are
executable on the host as well as the target.

I propose to introduce a new optional wordset for cross-compiling. It will begin by
identifying which of the present ANS Forth words (in all wordsets) fall into which category.
It will then establish the principle that an “ANS Forth system” exists if, during development,
the full set is available even though the host functions may be on a separate computer from
the target. The target is not required to provide host functionality, although it may do so.

3. Managing Scopes

A “scope” may be defined as the logical space in which a word is visible or can operate. In
this context, the host and target systems require separate scopes, to distinguish (for example)
the DUP that is used in the host computer’s underlying Forth from the one that is executable
only on the target, and the : used to build cross-compiler functions from the one that builds
target definitions.

I propose to define the following scopes:

• HOST: This provides access to the underlying system’s Forth, and is used to construct the
cross-compiler. It’s rarely used explicitly in programs built for the target, but is available
in case the programmer needs to do something special.

• INTERPRETER: These words are executed on the host to construct and manage target
definitions and data structures, and include all defining words plus words such as ,
(comma). New, application-specific, defining words are defined in INTERPRETER scope.

• COMPILER: This is used to make words executed inside TARGET definitions to construct
structures, etc.

• TARGET: This is the default scope, which contains all words executable in the target (and
are not guaranteed to be executable on the host).

By default, new commands belong to the TARGET scope; i.e., they are compiled onto the
target. But after the INTERPRETER command, new words are added to the host that will be
found when the host is interpreting on behalf of the target.

If you use any of these scope selectors to change the default scope, we recommend that you
later use TARGET before commands can again be compiled to the target.

The compiler directive in force at the time you create a new colon definition is the scope in
which the new word will be found. As a trivial example:

TARGET ok

: Test1 1 . ; ok
Test1 1 ok

INTERPRETER ok
Test1
Error 0 TEST1 is undefined
Ok

The table below summarizes the availability of words defined in various scopes.

Available in these scopes while
If defined in: interpreting: compiling:
COMPILER Not allowed TARGET
HOST HOST, INTERPRETER,

COMPILER
HOST, INTERPRETER,
COMPILER

INTERPRETER TARGET INTERPRETER
TARGET Not allowed TARGET

Scopes may be defined using wordlists and search orders, although they may also be defined
using non-ANS Forth techniques providing the correct functionality is supported.

4. Data Space Management

Target memory space can be divided into multiple sections of three types, shown in the table
below. Managing these spaces separately provides an extra measure of flexibility and
control, even when the target processor does not distinguish code space from data space.

Type Description
CDATA Code space; includes all code plus initialization tables. May be in PROM.

CDATA may not be accessed directly by standard programs.
IDATA Initialized data space; contains preset values specified at compile time and

instantiated in the target automatically as part of power-up initialization. It is
writable at run-time, though, so it must be in RAM.

UDATA Uninitialized RAM data space, allocated at compile time. Its contents cannot be
specified at compile time.

At least one instance of each section must be defined, with upper and lower address
boundaries, before it is used. Address ranges for instances of the same section type may not
overlap. The syntax for defining a memory section is:

<low address> <high address> <type> SECTION <name>

An instance becomes the current section of its type when its name is invoked. The compiler
will work with that section as long as it is current, maintaining a set of allocation pointers for
each section of each type. Only one section of each type is current at any time.

As an example, consider the following configuration of a program that runs from PROM. It’s
configured with the following sections:

INTERPRETER HEX
0800 08FF IDATA SECTION IRAM \ Initialized data
0900 0BFF UDATA SECTION URAM \ Uninitialized data
8000 FFFF CDATA SECTION PROGRAM \ Program in external ROM

4.1. Vectored Words

The words used to allocate and access memory are vectored to operate on the current section
of the current type. Use of one of the section type selectors CDATA, IDATA, or UDATA, sets the
vectors for the vectored words. If you only have one section of each type, the section names
are rarely used; however, if you have (for example) multiple IDATA sections, using the name
specifies where the next data object to be defined will go. Multiple sections of a given type
enable you to specify onboard and external RAM, for example, or handle non-contiguous
memory maps.

The vectored words are:

ORG (addr —)
Set the address of the next available location in the current section of the current section type.

HERE (— addr)
Return the address of the next available location in the current section of the current section
type.

ALLOT (n —)
Allocate n bytes at the next available location in the current section of the current section
type.

ALIGN (—)
Force the space allocation pointer for the current section of the current section type to be cell-
aligned.

C, (b —)
Compile b at next available location (CDATA and IDATA only).

, (x —)
Compile a cell at the next available location (CDATA and IDATA only).

4.2. Data Types

Target defining words may place their executable components in code space. Data-defining
words such as CREATE—and custom defining words based on CREATE—make definitions
that reference the section that is current when CREATE is executed.

Because UDATA is only allocated at compile time, there is no compiler access to it. UDATA is
allocated by the defining words themselves; a summary of defining words is given below. At
power-up, UDATA is uninitialized.

VALUEs must be in CDATA, because they are initialized. We define VARIABLEs to be in
UDATA, and will recommend that that be the default. We don’t specify where CONSTANTs go,
because some compilers compile references to CONSTANTs as literals; for that reason, we
would retain the restriction that they cannot be changed, and will not specify where they go.

The @ and ! words, as well as the string initialization words FILL , etc., may be used at
compile time providing the destination address is in IDATA. It’s an ambiguous condition
(our compilers will abort) to attempt to access UDATA other than from the target at run time.

4.3. Effects of Scoping on Data Object Defining Words

Defining words other than : (colon) are used to build data structures with characteristic
behaviors. Normally, an application programmer is primarily concerned with building data
structures for the target system; therefore, the dominant use of defining words is in the
TARGET scope while in interpreting state. You may also build data objects in HOST that may
be used in all scopes except TARGET; such objects might, for example, be used to control the
compiling process.

Data objects fall into three classes:

IDATA objects in initialized data memory—e.g., words defined by CREATE, VALUE,
etc., including most user-defined words made with CREATE … DOES>.

UDATA objects in uninitialized data memory—e.g., words defined by the use of
VARIABLE, BUFFER:, etc.

Constants—words defined by CONSTANT or 2CONSTANT.

Unlike target colon definitions, target data objects may be invoked in interpreting state.
However, they may not exhibit their defined target behavior, because that is available only in
the target (or in interacting state). Constants will always return their value; other words will
return the address of their target data space address. IDATA objects may be given compiled,
initial values with , (comma) and C, (c-comma), and you may also use @ and ! with them at
compile time. However, there is no way to initialize UDATA objects at compile time.

Some special issues arise when creating custom data objects in a cross-compiled
environment: defining words are executed on the host, to create new definitions that can be
executed on the target. Therefore, you must be in the INTERPRETER scope when you create a
custom defining word, and you must be aware of what data space you are accessing in the
new data object.

Consider this example:

INTERPRETER
\ ARRAY is an array of specified size in UDATA.

: ARRAY (n --)
 IDATA CREATE \ New definition with value n.
 UDATA HERE OVER ALLOT \ Allocate space, get location
 IDATA (Loc) , (Size) , \ Save size & location
 DOES> (i – addr) \ Take index, return addr of ith
 2@ ROT MIN + \ Compute indexed address
;

TARGET

100 ARRAY STUFF
You must specify INTERPRETER before you make the new defining word, and then return to
TARGET to use this word to add definitions to the target. The INTERPRETER version of

DOES> allows you to reference TARGET words in the execution behavior of the word, since
that will be executed only on the target.

When CREATE (as well as the other memory allocation words listed above) is executed to
create the new data object, it uses the current section type. The default in our practice is
IDATA. The defining words that explicitly use UDATA (VARIABLE, etc.) do not affect the
current section type. If you wish to force a different section type, you may do so by invoking
one of the selector words (CDATA, IDATA, or UDATA) inside the defining portion or before the
defining word is used. If you do this, however, you must assume responsibility for re-
asserting the default section.

You can control where individual instances of CREATE definitions go, like this:

IDATA
CREATE BYTES 1 C, 2 C,

UDATA
CREATE STUFF 100 ALLOT

In this case, the data space for BYTES is in initialized data space, but the data space for STUFF
is in uninitialized data space.

5. Conclusions

The above is a brief description of technology that has been developed and used by two
major vendors of cross-compilers, as well as many of their customers. We believe the rules
and side-effects are well-understood. The number of actual new words is small.

The hope is that adding these words can enable implementors to create standard cross-
compilers, and application programmers to write standard programs that can be trivially
modified to run in either domain, or provide initial stubbs to enable their programs even to
run on systems not providing the cross-compiler words.

