
micro FORTH PRIM ER

FORTH,lnc.

The contents of this document are the intellectual property of FORTH, Inc. and are protected by copyright. This document is provided free of
charge for personal, non-commercial, and academic uses. You may not redistribute this in any form without permission from FORTH, Inc.

1.

microFORTH PRIMER

Second Edition

FORTH, Inc.

815 Manhattan Avenue

Manhattan Beach, CA 90266

(213) 372- 8493

Copyright 1976, 1978 by FORTH, Inc.

Second edition
9 8 7 6 5 4 3 2 1

This book was produced by use of the textFO R TH System.

FORTH and microFORTH are trademarks of FORTH, Inc.

All rights reserved, No part of this bool< may be reproduced in any form or by
any means, electro nic or mechanical, including photocopying, recording, or by an
information retrieval system, without permission in writin g from:

FORTH, Inc .

815 Manhattan Avenue

Manhattan Beac h, CA 90266

TABLE OF CONTENTS

FIGURES AND TABLES .

PREFACE

1.0

2.0

3.0

BASIC OPERATIONS . . • .
1.1 GETTING STARTED • . • • . . . • . • . . • • • •
1.2 WORDS . •.•.•..••
1.3 NUMBERS • . • • . . • • . • •
1.4 THE PARAMETER STACK . • • • •
1. 5 ARITHMETIC . . • . . . • • • • •
1.6 STACK MANIPULATIONS . . . • . • • • •
1. 7 DEFINITIONS • • • • • . . • • •
1.8 MODES • • . • . . . • • ••

Exercises

EDITING AND PRINTING • . • . • • . .
2.1 BLOCKS AND SCREENS • • . . . • • . . • •.

2 .1. 1 Blocks • • . • • . .
2.1.2 Screens .•. •

2. 2 THE EDITOR • . • • . • • . • • . • • • . . . • • •
2. 2 .1 Editing by Line • • . . . • . .
2.2.2 Editing by Character ...••.
2.2.3 COPYing .•.•...•. • ...•••

2.3 LOADING MULTIPLE BLOCKS • • • • . • •
2.4 THE PRINTING UTILITY
2.5 OVERLAYS •..•

Exercises • • . .

DATA DECLARATIONS . . . •
3.1 CONSTANTS
3.2 SIXTEEN - BIT VARIABLES
3.3 BYTE VARIABLES •...
3. 4 ARRAYS • . • • . • . • .
3.5 OTHER MEMORY OPERATIONS •.

Exercises • • . • • . • •

V

1

5
5
6
7
7

10
10
11
12
13

17
17
18
18
19
19
22
23
24
24
25
26

29
29
29
30
31
32
33

4 . 0 CONDITIONAL BRANCHES AND LOOPS
4.1 CONDITIONAL BRANCHES •• • ••
4 . 2 COMBINING TRUTH CONDITIONS •

5.0

Exercise
4. 3 INDEFINITE LOOPS • . • • • ••• • •.
4.4 THE RETURN STACK

Exercise • . • • • • .
4.5 CONTROLLED LOOPS •

Exercises • • . • • • •
4.6 NESTING STRUCTURES

Exercises • . . • • • • • • •
4. 7 RECAPITULATION • • • •

SAMPLE PROGRAM DEVELOPMENT .
5.1 PROGRAMMING PHILOSOPHY
5.2 TOP - DOWN DESIGN
5.3 TESTING AND DEBUGGING
5 .4 CROSS-COMPILATION • . • • .
5.5 THE TV REMOTE CONTROL UNIT •

6.0 ASSEMBLER FEATURES •.•• •• •••
6.1 CODE DEFINITIONS •••••
6.2 NOTATIONAL CONVENTIONS

Appendix A.

Appendix B.

A SUMMARY OF FORTH RULES •

microFORTH GLOSSARY. • • • •

iii

35
35
38
38
39
40
42
42
45
45
47
48

49
49
50
50
50
50

57
57
58

61

63

FIGURES

Figure 1.

Figure 2.

Fig ure 3.

Figure 4.

Figure 5.

TABLES

Tab le I.

Table II.

Table III.

Table IV.

Table v.
Table VI.

FIGURE S AND TABLES

THE microFORTH SYSTEM
FORTH'S TWO STACKS • . .

NESTING DO ... LOOPS

TV REMOTE CONTROL UNIT

THE DEFINITION OF TV IN SCREENS

ARITHMETIC OPERATORS

COMPARISON OPERATORS
STACK MANIPULATION OPERATORS • .

EDITING COMMANDS

EDITING CON VENTIONS .

MEMORY OPERATORS

V

.
.

4

8

46

51

55

14

15

16

27

28

34

PREFACE

In order to make reading our documentation as easy as possible, we at FORTH,
Inc. use the following conventio ns in manuals:

1. All FORTH words that appear in prose passages as examp l es of
commands are enc lo sed by at least one extra space on eac h
side. Words defined as occasional examp les are also set off.

2. Where there mi g ht be conf usio n abo ut who types what, we
underline the comp ut er 's output.

3. In all examples that show stack us age, the top item of the
stac k appears to the right (a s it do es on your terminal scree n
when you are enter ing).

4. We provide brief examp les of definitions as often as possible.
After the normal, horizontal placement of a definition, we often
provide a vert ical breakdown with co mpon ent s of the definition
in a colu mn to the left and exp lan at ion s or com men ts on key
words in a column to the right:

where:

DEFINITION condition IF this ELSE that
THEN continue ;

DEFINITION
condition

IF

this

ELSE
that

THEN
continue

Places a condition (non - zero / zero) on
the stack.
Removes and tests the number on the
stack.
Executes 11thi s 11 if the number was
non- zero (tru e).

Exec ut es 11th at 11 if the number was
zero (fal se).

Continu es from both lines.

This expanded version is for illustration only; you will always use
the horizo ntal format.

microFORTI -I PRIMER August 1978 Page 2

Add i t ion a l co nv e n t ion s u sed in FORTH m a nu a ls are tho se that FORTH
pro gr amm ers us e to mal<e so urce sc r ee ns readab le. At th e end of Chapte r 2 we
provid e a full li s tin g of FOR TH ed itin g convention s for s ourc e t ex t . Her e a r e
thr ee that you will obser ve in th e examp les of Chapters 1 a nd 2:

1. Although only on e space is ab so lut e ly necessa ry betw ee n ea ch
word of a d efinition, spacing thr ee tim es af t e r a new word th at
is being defined sets off the major co mpon ent s.

2. Double s p ac in g betw ee n phrase s (lo g ica l c lu s t ers) of a
def inition also helps mak e so ur ce t ex t leg ibl e.

3, When a definition tak es up mol' e than o ne lin e , t h e_ fo llowin g
lin es begin with an ind ent at ion of th ree Ol' mor e spaces to sa ve
the le ft margin for words be ing de fin ed.

While illu strati ve figures c lose ly follow the port ions of t ex t to whi ch they app ly,
we place table s a t th e e nds of C hap ters 1, 2, a nd 3 for ease of later r e fer ence.
Ther e ar e a few fundam ent a l proc edur es that must be obser ve d in order to writ e
clea r PORTH prog r ams; we call th ese R ules. Eac h is set off in upper - case and
numb ere d on its f irst appea rance. They are also print ed toget he r as a lis t whic h
ma kes up Ap pe ndi x A. Appe ndi x B co ns ists of a mi c roFO RTH Glossary t hat
contain s wor ds co mm on to all sys t e ms.

Fo r microFORTH us e r s w e publish t hr ee levels of docum e ntation. Th e
mi croF O RTH Pr im e r co v ers t h e b ro a des t a nd most b as i c aspects s in ce it is
mt e nded To'r" th e newc om e r to programmin g to wor k throu g h b efo r e c omm enc ing
st ud y of th e mi c roFORTH Tec hni ca l Manual. Th e Pr im e r a lso serves as a
pro s p ect us for expe ri e nc e d pro g ramm ers to read qui ck ly in order to s pot
philo sop hical diff e rences betwee n FORTH an d ot h er hig h-l evel langua ges and/or
opera tin g sys te ms.

Alt hou g h th e Prim er is writt e n for novice program mers, we do ass um e a bas ic
und erst andin g of co mput er term s. If you l ac k backgro un d, we s uggest t hat you
stu dy fir s t e ith e r of Ada m Osborn e 's g 1·o undw ork books, An Introdu c tion to
Microcomput e rs, Volum es O or 1 (Berke ley, CA: Osborn e a nd Associ a tes, Inc.) or
G r a nino A. Kor n' s Minicom p ut e r s for En g in ee rs a nd Scie n tists (N . Y .:
McG raw - Hill).

Th e seco nd l e v e l of doc um e n t a t ion is mor e sp ec ifi c. Th e m icroFO R TH
Tec hni cal Manu a l presen t s t h e ba s ic mat er ia l in a conde nse d ma nn e r b ef or e
ex panding on t h e s ubj ects of th e comp il e r, t h e asse mbl e r , a nd t h e
cross - c ompil er. Sin ce hardwa r e va ri es from c hi p to c hip , we publish fo ur
vers ions of th e Tech ni cal Manual, one eac h for th e 8 080 , 6800, 1802, and Z8 0.
Eac h v ers ion will so on includ e t h e a ppropri ate glossaries for th e
ha rdw a re -depende nt defi niti ons of asse mbl er and cross - compiler. Whe n th e 4t h,
comp le t e ly new e di t ion of t hi s ma nu a l co mes out (in 1979), a ll mi croF ORTH
c usto m e r s will rece iv e cop ies; updates a nd/o r e rrata s h eets will b e iss u ed
th ereafte r .

Bes id es th e diff e r e nces in chip s, va ri atio ns ex is t within eac h c hip category for
part icular de velop ment syste ms on which mi croF ORTH has b ee n prod uced. These
differences a r e documented in t he listin gs a nd CP U-s pec ifi c inst ru ctio ns th a t a r e
iss ued with eac h microFOR TH sys t e m . Wh e n users r e port espec ially us ef ul
soluti ons to prob le ms that arise dur ing init ia l use of mi croFO R TH sy s t e ms, we

microFORTH PRIMER August 1978 Page 3

share th e information in these pac l<ets. The document at ion of Options likewise
acco mpanies deli very of eac h particular opt ional program.

Sinc e we want you to ma l<e th e most of your mi cro FORTH system, we have
developed a Hotline ser vi ce, programming c lasses , and th e FORTH, In c,
Newsletter.

During r eg ular busin ess hour s a progra mm er is availabl e to help you with
suggest ions about troubleshoot ing. Since all of our programmers work on-site
when necessary, at t imes there will be a slight delay before someone returns
your ca ll . Try, therefore, to place your call as soon as you at'e sure you have a
problem.

Classes are held at FOR TH, Inc. whene ver the numb er of potential st ud ent s
warrants one. Each microFORTH class features an overview and th en the focus
turns to th e spec if ic nee ds of tho se who atte nd , If you would lik e to
participate in such a class, use th e Hotline to add your na me to the request
list for th e next scheduling.

A new aid, the FORTH, Inc. Newsletter (And So FORTH ...), is being published
quart er ly. Each custom er receives two copies; eac h issue features articles on
programming. Since th e c ont ent is int end ed to r efl ect user concerns, you r
quest ions and sugges tions will be appreci ated.

While you are r ea ding any FORTH, Inc . manual, we hope you will make not es
about qu est ion s r a ise d but not answ ered, passa ges that are not c lear, and,
espec ially, a ny mista kes you may find. We includ e a "Reader Comment Form 11

with both th e Primer and the Technical Manual to re mind you that we need your
feedback in order that we may se rve all our users well.

microFORTI-1 PRIMER Page 4

Typical microFORTH System

High RAM

Low RAM

DISK BUFFERS

SPACE FOR

APPLICATION VOCABULARY

BASIC FORTH

DICTIONARY

FORTH

PROGRAN

SYSTEM VARIABLES

TERM I NAL BU FF ER

STACKS

1. 0 BASIC OPERATIONS

Before you begin rea ding this manual, please take the tim e to read through th e
Preface so that you unders t and the editin g conventions used in ma nuals written
a t FORTH, In c. and the rel at ionship of the Prim~ to mi c roFORTH
documentation in gener al .

The eas ies t way to lea rn FORTH is to use it. Since FORTH is an int eract ive
language, you can and should expe rim ent with it dir ec tly at your terminal. In
this introdu ctor y manu al we will present ma ny exa mpl es to illu strate the
capab iliti es of FORTH; we urg e you to try these exa mples yourself at your
t erminal . There are exe rci ses at th e end of most of th e chapt ers to help you
lea rn to use FORTH on your own . Oth er problems may sugges t themselves to
you as you progress .

1.1 GETIING STARTED

Physically, your m icroFO RTH system consists of a suit ably co nfigur e d
microproc es sor d evelopment system, a computer t erminal, a disk e tt e that
contains the microFORTH system, and, in some cases, a microFORTH boot PROM.

Concep tu ally, any micro FORTH syste m (Figure 1) includes:

the FORTH program, includin g int erpr et ers , compiler, asse mbler, and
disk operating system;

th e bas ic FORTH diction ary;

vari ables, buff ers , and stac ks appropri a t e for your micro pro cessor;

and memory available for an applica tion vocabulary to be programmed
by the user.

The deta il ed s tartup procedure is outlined in th e Installation Instructions
provided with your microFO R TH disk et t e. Using th ese instr uctions, you cause
the FORTH syste m on the disk ette to b e r ea d into the memory of your
d e v elopm e nt syste m. You can th e n use F ORTH imm e di a t e ly to solve
programming problems without nee d for any other "monitor" or "opera tin g
system."

When your mi cro FOR TH system has successf ully loa ded, it will typ e out OK
and space to a new lin e . The OK response is returned whenever the FORTH
text (or outer) int erpreter has successf ully comp l ete d your last request and is
awaitin g new input. You type commands at the terminal, concluding th em wit h
a carr iage return. When the carr iage return is typed, FORTH ec hoes a space to

microFORTH PRIMER Page 6

separate your input from any generat ed output and th e n beg ins int erpr etin g your
command s.

Until you have ac tually typ ed th e ca rria ge return, you may change your commands
by using th e RUB OUT key to del e t e any unwa nt ed characte rs (pr ess ing it once
for each chara cter to b e deleted) und th en re typin g th e remainder of th e lin e.
On CRT terminals the cur sor is back spaced once for ea.ch RUB OUT. Do not
use the l<ey mar ked BACKSPACE when you want to rub out charact ers sinc e only
th e key mark ed RUB OUT (or DEL for delete) will perform thi s action.

The s impl es t co mm and th at you can give to FORTH is an e mpt y lin e. If you
type a si ngle car ri age re turn at your t erm inal , FORTH will respo nd with a
space, inspect th e input, see that there is nothin g to do, output an OK , space
to the nex t lin e, a nd th en wait for mor e input. You should try thi s to ass ur e
yourself that your microFO RTH syst em is a.live and liste ning to you .

1.2 WORDS

The ba sic co mm a nd unit of FORTH is ca ll ed a word . A word co ns is ts of a
string of charact ers (letters and/01• num bers) th a t is delimit ed by spaces. Ther e
are no restr ict ions on th e characters that make up a word (exce pt that a word
may not hav e an e mbedd ed space, carriage re turn, or back spa ce chara cter), nor
on th e numb er of charac ter s in a word . This prin c iple is important enough to
summariz e:

RULE 1: FORTH WORDS ARE MADE UP OF AN ARBITRARY
NUMBER OF CHARACTER S, SEPARATED BY SPACES.

After you c lose a lin e of t ext with a ca rri age return, th e FORTH t ext
int er prete r sca ns the input lin e , br ea ld ng it up int o wor ds which will be exec ut e d
in th e order of entry. Each word in FORTH has a nam e (th e way you refer to
it; it s prop er spell ing) and a definition (the mea ning ,~ the wot'k t hat is to be
acco mpli shed) .

To exec ut e a word, t he int e rpr e t er mu st de t er min e t he word' s m ea ning by
searc hing th e dictionarfj . Th e interp reter searc hes for t he nam e of eac h word in
ord e r to lo ca t e its de ini tion. If th e word is found in the dictionary, th e n th e
def ini t i on is in te rpr e t e d . If th e word is n ot found in th e dictionary, the
int er prete r a tt empts to convert the word to a sixt ee n-bit, fixed -po int integer.

When th e int er pr eter cannot int erp re t a word (if the word is not fo und in th e
dictionary and is not a numb er modulo the curr ent base), th en an err or message
is given: th e unknown word is ec ho ed ba ck to you on the ter minal , followed by
a question mark . There is no OK or carr iag e re turn after an error messa ge.

Word s are a dded to th e dictionary by d ef ining a "n e w" word in terms of
curr ently ex ist ing words in the dictio nary. This exte nds t he basic FORTH syste m
in t he specific dir ec tion you want to take. Rat her t ha n in d ividu al spec ia l
programs , you will cr eat e a growi ng, mor e pow erful FORTH voca bulary . That
means that you will spe nd mor e time on your first application than the second.
By th e tim e you reac h your third app licat ion in micr oFORTH, you'll find th a t a
sui table vocabu la ry already exists to so lv e mos t of your pro g ra mmin g proble ms
wit h very littl e addi tional ef fort.

microFORTH PRIMER Page 7

1.3 NUMBERS

Numbers ca n be expressed in any base -- dec im al, octal, and hexadec im al are
sta ndard. At any time you ca n use the commands DECIMAL , OCTAL , or
HEX , or you ca n def ine anoth er base to esta blish the appro pria t e way to treat
all succeed ing numb ers, both for input and output. In general, you should pick
one base and stic k with it throughout a ll your definitions to avo id confli cts in
int erpretat ion . Initially, FORTH assumes the DECIMAL mode.

Numbers may be typed in as positiv e (unsigned) or negat ive (pr ecede d by a
minu s sign) int egers. Pos itiv e numb ers in the range O through 655 35 are
acceptab l e because they can be stored in sixteen bits . Signed numbers in th e
range - 32768 to 32767 ca n be accepted; they are st ored in two 's co mplement
form in sixtee n bits. It is import ant to note, however, that positive numb ers
lar ger than 32767 ca n be interprete d as two's compl ement negative numb ers,
espec ially if they are involv ed in arithmetic operations. Numbers larger than
sixtee n bits will mere ly be truncated to sixtee n bits.

Numbers are ent ered by typing them at t he terminal. As with words, numbers
are bound ed by spaces . The interpreter will fir st searc h the dictionary for the
"word" ent ered, If it is not found in the dictionary, the int erpre t er tr ies to
co nv ert the "word" to a number. If the number con vers ion succ eeds, it is
placed on the para meter stac k, which will be described in the next sectio n .

Sinc e all numb ers are stored in bin ary form, you can take advant age of numer ic
base selection to perform numb er convers ions. To convert a dec imal number to
hexidec imal, for exa mple, type:

DECIMAL 583 HEX ,

and you will receive the response:

247 OK

But re me mb er th at you stay in HEX mod e until you type in the co mm and
DECIMAL aga in.

1. 4 THE PARAMETER STACK

All co mput er programs ex ist to manipul ate data by using an estab lished set of
parameters. Most of the parameters th at FORTH words use to manipulate data
are maintain ed on a push- down stac k, called the parameter stac l<. This stac l<,
which is sixteen bits wide, is similar to tho se in pocket calculators that use
postfix function lrnys or Reverse Polish Notation. A push - down stack is a
particular ar ran ge ment of me mory s tor age; FORTH words that r efer to the
par a me ter stack do so by accessing only the topmost it ems (the ones most
recently placed on the stac k) . A convention al random -access memory (RAM) can
be used as a Last - in-First -Out (LIFO) stack, such as those shown in Figure 2.

During the boot procedure a s ingle pointer is initiali zed to point to a pat·ticular
locat ion in memory. Once this pointer is initi aliz ed, th e parameter st ack gro ws
toward low me mory . When info r mat ion is to be written onto th e stack, th e
address Trit he pointer is decr ement ed and the information is then stored at the
locatio n being point ed to. When informati on is to be read from t he stack, the
inform at ion is fetched and then the pointer is inc rement ed , Note that whil e
reading from the stac k effect ively removes the info rma ti on forevermore (unlik e
reading from convention ally organ ized memory), writing to t he stac k pres e rves

rni c roFOR TH PR IM ER

FORTH's Two Stacks

POI NTER

PARA.~TER

STACK

16 - bit

2

4

6

8

16 - bit

l

RE.TURN

STACK

Page 8

POINTER

microFORTH PRIMER Page 9

all the prior contents of the stack that have not yet been read.

One of the basic rnles of FORTH, then, is:

RULE 2: MOST WORDS REQUIRE PARAMETERS ON A
PUSH-DOWN STACK,

Actually, FOR TH manages two stacks, alt hough we will defer discussion of the
other one (al ways cal led by its full name, the return stack) until later in the
manual.

To place a number on the stack, you can type it as part of your input com mands.
Now type:

2 4 6 8 (follow ed by a carriage return)

When you hav e typed in th e examp le above, you hav e create d a push- down stack
that looks like the parameter stack in Figure 2.

One of the simpl est kind s of operations FORTH provides for manipul at ing the
stack is one that prints the contents of the topmost it em . FOR TH1s predefined
sy mbol, the period or dot, causes the topmost it em of the stack to be removed,
conv erted to a numb er, and then displayed. If the stack is as shown in Figure
2A, then for each period you type in, the success iv e topmost it em of the stack
will be revealed. If you type five periods followed by a carriage ret urn, your
CRT screen will look like this:

. 8 6 4 2 0 • STACK EMPTY!

Each time the dot is enco unt ered, the stack is depleted by one it em. Since
there were only four it ems on the stack (put there by the four operations 2 4 6
8), the fifth request for a display from the stack displays garbage (in this case
the number O), and underflow s the stack. FORTH won't let you get away with
that; it issues a copy of the off end ing word (in this case, a period), followed by
an error message, STACK EMPTY!

When you receive any er ror message (wh et h er STACK EMPTY ! or ? or
DICTIONARY FULL!), you must reme mber that your stack has been emptied.
Before you can perfor·m the operation you were attempting, you must reent er t he
necessary parameters.

RULE 3: ANY ERROR MESSAGE EMPTIES BOTH STACKS.

The dot operator is useful when you are debugging a definition. If you have
trouble, you can display the stack, it em by it em, and compare the contents with
wha t you ex pected , That will usually isolat e the problem. Of co urse, reading
the stacl< items will cause them to be removed. If you're debugging, after
you 1re sa ti sfied with the displayed values, you may simply type those values back
in aga in:

2 4 6 8

microFORTH PRIMER August 1978 Page 10

1, 5 ARITHMETIC

FORTH has a pre - defi ned se t of al'it hmet ic operators (see Table I) . Since FORTH
uses a push-down stac k and Re verse Po lish Notation, parameters must be on th e
s tack before the operation ca n b e perform e d , T hu s, to a dd two numb e L'S
toge th er a nd display the res ult s , typ e in:

5 27 + • 32 OK

Breaking thi s lin e down into it s co ns titu ent parts, you will find that :

5 Pushes th e valu e 5 onto th e sta ck .

27 Pushes the value 27 onto the stack.

+ Remov es the top two it e m s fro m th e s tack, adds them
together, and plac es the s um bac k onto th e s t ac k. No t e
that th e s tack has a ne t loss of one it em.

Re m o v es th e top it e m from t he s tack and di s plays it :
32 OK

Thus you lea ve t he stack jus t as it was before you started.

For programm ers who have had so me ex perienc e with alge br a ic l a nguages (lik e
FORTRAN), FORTH 's postfix nota t ion may see m unu sual. It will be fa mili ar,
howe ver , to mos t use rs of poc ket ca lc ulators and is extreme ly e ffectiv e wh e n
used properly.

Process in g of co mpari sons may a lso b e unf a mili a r . FORTH ass um es the
co nventions of pos itiv e log ic: one (or non -ze ro) impli es true, ze ro is false. The
FORTH r ela ti ona l words (s uc h as > , < , or =) m ay be r e m e mb ered as
writt e n between th e seco nd stack entr y on th e l eft a nd th e top s tack on t he
r ight. Thu s A B < will t es t for A < B a nd le ave onl y a truth valu e on th e
stac k, s in ce both A a nd B ha v e bee n rnmov e d. The word NOT (or O=)
revers es th e truth va lu e of th e top it e m, chan ging ze ro to on e a nd all e ls e to
ze ro. Log ica l branching word s (a mon g other s) in F ORT H d ep e nd hea vily on
th ese co mpar iso n met hods a nd the ir re sultin g s ta ck val ues (see Table II) .

1.6 STACK MANIPULATIONS

Ot her freque ntly performed operatio ns are c lass ifi ed as stac k manipul at ion s, for
whi c h FORTH pro vid es a few s impl e word s. Th ese words (d escr ib ed in Tab le
III) a r e ge nerally us ed to maintain disc iplin e in the stack w h en i t co nt a in s
par a meters. Experi m entin g wit h t hese words will ma l<e them usef ul to you
quickly .

Whil e you are practic in g, kee p in mind two e le m e ntary rul es t hat yo u must
obser ve with r es p ect to s t ac ks. The most fu nda m ent a l r ul e is to m a in ta in
"parity " of operations on t he stack: everyt hin g you put onto the stack must be
re mov e d by s om e op era tion. If you lea ve parameters on a stac k, it is beca use
you have forgotten so me st ep; t his leads to stack overflow . In ot her words:

RULE 4: ALL PARAMETERS PUT ONTO A STACK MUST BE
REMOVED WHEN THEY ARE NO LONGER NEEDED.
TH E ORDER WILL BE LAST IN, FIRST OUT.

microFORTH PRIMER Page 11

Also remember that you should never remove more it ems th an you have first
pushed onto the st ack.

After you have become familiar with both th e ar ithm et ic operators and the stack
manipul a to rs, you will want to create your own co mbination s. For exa mple, a
conv enie nt way to double a numb er is to add it to it self. This ca n b e
accomp lish ed by the seq uence:

DUP +

where the DUP is used t o duplicate the number on the stack . Similar ly, to
square a number you use:

DUP *

1. 7 DEFINITION S

Part of FORTH's power li es in your ab ili ty to define your own new words.
Im ag ine that you frequently want to add two numb ers and print the sum; you
could always typ e in + and for eac h operation. That, however, could lead
to er ror s. Even in such a simpl e case it is possible to utilize FORTH 's power,
sinc e it would be eas ier to type one word instead of two.

Try defining a new word, named ADD , by enter ing:

: ADD +

Here is what eac h component in this defi ning operat ion does:

A colon begins a definition.

ADD The na me of the word to be added to the dictionary
follows th e colon th at starts a definition , For reading ease
the name is followed by three spaces.

+ The FORTH words define what to do for ADD •

A se micolon ends a definition .

After making this defi nition, you mere ly type in two numbers and then the word
ADD in order to comput e and print th e sum of the two numbers:

1 2 ADD 3 OK
4 5 ADD 9 OK
854 21 ADD 875 OK

Sinc e ADD has now been defined to be identi ca l to th e exec ute d seq uence of
+ followed by . , you ca n use eith er ADD or the se qu ence to get the
desired answer printed out.

What would have happ ened if you had used ADD before t he word was defined?
FO RTH won ' t a llow th at. It prints out th e und efi ned word followed by a
question mark. Try this with a different word, such as PL US ; you will see
the et'ror message:

1 2 PLUS PLUS ?

microFORTH PRIMER Page 12

That points up anoth er fundamental FORTH rul e:

RULE 5: ALL WORD S MUST BE DEFINED BEFORE THEY CAN
BE USED.

Fortunately, espec ially for the novic e programmer, FORTH has a ric h vocabulary
of pred ef ine d word s . Such a word is ? , which prints the contents addressed by
th e top of th e s t ac k; ? has a simpl e definition:

: ? @ • ;

Anot he r simpl e combination that is predefin ed in s tandard microFORTH, 2~' ,
double s the top stack item . If it wer e defined in high level, it s de finition might
read:

: 2* DUP + ;

Table IV provid es easy ref e rence to oth er fundamental microFORTH opera tors.
Th e four tables includ e only the most basic microFORTH words; for a complete
glossary (exc lusiv e of a few words spec ifi c to part icular CPUs), see Appendix B.

By taking advantage of FORTH's ability to def ine new operation s, formul as may
be nea tly fact or ed , with co mmon components being d efined as operator words .
Makin g good ~~pre d ef in ed FORTH words and choosing good names for your
new op erator s ca n mak e th e resultin g definitions both compact and readable .

For instance, th e stack m anipulation word s (DROP , DUP , OVER , SWAP ,
and ROT) ca n be used to asse mbl e compl ex arit hm eti c ca lc ulation s . Given the
constant s A , B , and C , you can define a word nam ed QUADRATIC :

: QUADRATIC DUP A * B + * C + ;

to comput e the quadratic function Ax2 + Bx + C, whe r e x is the valu e on top of
th e s t ac k.

1.8 MODES

Th e FOR TH text int erp r e t er ope 1·a te s in two mod es : imm e diat e exec ution and
co mpilation. In imm e diat e exec ution mod e eac h word of the input string is
look ed up in the di ct ionary a nd exec ut e d. During compilation, on the oth e r
hand, mos t words a r e not exe cuted; instead a reference to th em is compiled into
a de fini t ion in th e dictionary. Th e word (co lo n) plac es the int erpreter in
co mpil e mod e, whereas (se mi colon) return s it to imm e diate exec ution .

The com piled form of th e de finition co nsi sts of point ers to th e addresses of
routin es that will b e exe cuted by th e a ddr ess (or inn e r) int erpr e ter when th e
definition is exec ut ed . This form of int e rpr e tation (a ddr ess int erpretation) is
ex tr emely fa s t.

To dist inguis h betwee n t he m odes of imm e di a t e exec ut ion and co mpilation, try
th e following exa mpl es:

microFORTH PRIMER

905 • 905 OK

: SHOW 905 • ; OK

SHOW 905 OK

Page 13

Executes imm ed iate ly. Note th e
int eract ion .

Compiles; nothi ng happens yet.

Executes th e co mpil e d routine to
produ ce the desir ed result.

There are vas t number s of var iations on th ese bas ic themes, as well as whole
gro ups of other words already defined in FORTH. To lear n quickly, you MUST
practice wit h th e basic FOR TH words, the words described in the following
chap ters, and the word s you evolv e out of experi ment s. Develop a kind of
not at ion which will lea ve you with a ske tch of what you have done (t o help you
avoid making the sa me mist akes twi ce).

EXERCISES

1. What is t he cliff ere nce bet wee n:

DUP ~· DUP * and DUP DUP * *

2. Using only two FORTH wor ds , def ine a word cal led 2DUP to
duplicat e th e top pair of stac k it ems. That is, after:

1 2 3 2DUP

the sta ck should cont ain:

1 2 3 2 3 (seco nd 3 on top)

3. What is the cliff ere nce betw een:

OVER SWAP and SWAP OVER

microFORTH PRIMER Page 14

Tab le I. ARITHMETIC OPERATOR S

EXAMPLE OF EXAMPLE OF
WORD DESCRIPTION STACK BEFORE STACK AFTER

top top

t 0
+ Adds. 9 6 2 9 8

Subtr acts. 9 6 2 9 4

* Multiplies (uns igned) . 9 6 2 9 12

2* Doubles an entry (unsigned) . 9 6 7 9 6 1 4

I Divides (un signed) . 9 6 2 9 ·3

ABS Lea ves th e absolute 9 - 6 - 2 9 - 6 2
valu e .

MAX Leaves larger of 9 6 2 9 6
top two entr ies .

MIN Leaves smaller of 9 6 2 9 2
top two entri es

MINUS Perfor ms twos 9 6 2 9 6 - 2
comp lement
(un ary minus) .

MOD Leav es modulus 9 6 2 9 0
(division remainder) .

microFORTH PRIMER Page 15

Table II . COMPARISON OPERATORS

EXAMPLE OF EXAMPLE OF
WORD DESCRIPTION STACK BEFORE STACK AFTER

top top

t J
< Compares; lea ves 1 if 9 6 2 9 0

second entry less than
top; otherwise O.

> Compares; lea ves 1 if 9 6 2 9 1
second entry greater
than top; oth erwise O.

NOT Tests for zer o; lea ves 9 6 2 9 6 0
or O= 1 if top entry is zer o;

otherwise O.

o< Tests for negat ive; leav es 9 6 2 9 6 0
1 if top entry is less
than O; otherwise O.

= Tests for number equals; 9 6 2 9 6 0
leav es 1 if top entry
is zer o; otherwise O,

microFORTH PRIMER Page 16

Tab le III. STACK MANIPULATION OPERATORS

EXAMPLE OF EXAMPLE OF
WORD DESCRIPTION STACK BEFORE STACK AFTER

top top
I 0 V

Prints the it em that is 1 2 3 1 2
on the top of the stack

DROP Discards top entry . 3 2 1 3 2

DUP Duplicates top entry. 3 2 1 3 2 1 1

- DUP Duplicates top entry 3 2 1 3 2 1 1
if it is non -zero. or

3 2 0 3 2 0

OVER Cop ies second entry over 3 2 1 3 2 1 2
top entry.

ROT Rotates top three entries . 4 3 2 1 4 2 1 3

SWAP Swaps top two entri es. 3 2 1 3 1 2

2. 0 EDITING AND PRINTING

When you first brought up your microFORTH syste m, you inserted a diskette in
the disk drive and booted up. Very s imply, this boot procedure read a
precompiled program from the diskette which in turn read in mi croFOR TH
so urc e text from diskette and compiled it into RAM. Compiling, in FORTH, is a
process which translates sourc e text into diction ary entri es th at contain mac hin e
code and addresses. Only the machine co de a nd addresses res id e in memory;
source text remains on diskette.

When you s imply typ e trial d ef inition s at your terminal, they are compiled
imm e diat e ly into your dictionary and your so urc e text is "lost" (i. e. , not
preserved on diskette). Wh e n you reboot your system, any such occasional
definition will have bee n clear ed out. (It is this aspect of FORTH that allows
you to test definitions in an impromptu ma nner.) If you should then want to
us e any of your occasional def initions aga in, you would ha ve to typ e them in
once mor e.

It is mu c h more con veni ent to put your tested so ur ce text on the diskett e ju st
as the mi croFORTH syste m programmers hav e done. Us ing th e same process
that boots the syste m (see Sect ion 2.1.2), your definitions ca n be compil ed into
memory from the diskette rather than from the terminal.

Befor e discussing how text is entered on diskette, let 's co ns ider the st ru cture of
the disl<ette.

2. 1 BLOCKS AND SCREE NS

Each diskette contains a fixed numb e r of blocks; eac h block is numb ered and
co nt a ins 128 byt es. When e ver a bloc!< is nee d ed, it is l'eq uested by it s block
numb er. The block numb er reflects it s r e lativ e (lo g ica l) position on th e
disl<ette so that Block O is the f ir st blocl<, Bloc k 1 the second, and Blocl< 1999
the la st bloc!<.

Sour ce text in microFORTH is formatted for the terminal in a scree n . A screen
is a set of 1024 characte1's fo t'matted as s ixteen lin es of sixty - fo ur c haracte r s
eac h. Sinc e a character occupies one byte, it tak es 1024 byt es to hold a n
ent ir e sc r ee n. A sc r ee n of text is therefore he ld in e ig ht co nti g uou s di s k
blocks. A disk e tte may hold 25 0 scree ns of source t ext, numbered from O to
249. Scree ns O to 60 conta in your basic microFORTH so ur ce, including what ever
options you may have ordered, plus a s m a ll a mount of pre - co mpil ed binary
inform at ion. The rest of the sc 1·ee ns are ava ilab le for your use .

microFORTH PRIMER Page 18

2. 1.1 Blocks

To place a specif ic disk block into co mput er memory, use the FORTH word
BLOCK preceded by the ap propri ate numb er. Thus,

15 BLOCK

places Bloc !< 15 in me mory . BLOCK also lea v es t he m e mory ad dr ess of
th e ze roth word of the block on the stack.

If any do.ta is writt en into t he bloc k in memory , t he blo ck must be marked
so t hat t he revised blo ck co nt ents will replace the old on t he disl<ette. The
word UPDATE is us ed for t hi s purpo se. UPDATE m a rk s t he mo st
rece ntly used block for writin g to diskette, a lth ough it may or may not b e
writt en to diske tte imm ed iate ly . The word FLUSH is use d to force a ny
"updated " blo cks out to diskette and s hould be use d before shutt ing dow n t he
syste m.

These words compr ise the basic bloc l< I/0 ro utin es. To under stand them
mor e thoroughly it is necessary to und ers tand t he nature of virtual me mory
as FORTH uses it. The m emory addres s that is returned to yo u in the
ro utin e nam ed BLOCK denotes t he location of on e blo ck buff e r. The
block buff ers res ide at a fixed loca ti on in hig h m emory (abo ve t he r e turn
and parameter stac ks) and eac h conta ins 128 byt es of data from disk ette
plus a block ID word (two byt es) with a valu e b et wee n O and 1999. When
me mory per mit s , your microFORTH sys t e m as del iv ered will ha ve e ight
blo ck buff e rs. This numb er g ives a good tr ade off betwee n m emory usag e
and disk acce ss ing.

The word BLOCK fir st se arche s the block bu ffer IDs to see if t he blo ck
currently r es id es in th e block buffers. If it do es , no dis kette access is
mad e. Ot he rwi se, t he blo c k is r ea d from di sl<ette. UPDATE sets th e
high-order bit of th e hi gh-order byt e of t he Block ID to one if t he block is
to be writt e n to d iskette. A blo ck is writt en to diskett e if i ts bu ffer is
nee ded by another BLOCK req ues t or if FLUSH is spec ifi ed.

2. 1. 2 Scree ns

When so ur ce t ex t is to be interpreted, you will use th e word LOAD •
Thus,

150 LOAD

int er pr ets th e e ight blocks t hat m ake up Scree n 150 as if you had typed all
th e te xt thi s scree n conta ins at th e ter min a l. The imm ed iate impli cat ion is
that a screen ca n co nt ain both defin i tions a nd any executab le com mands.
Any def initio ns will be co mpil ed; any other comma nds will be executed.

Line O of an e mpty scr ee n on a m icroFORTH diskett e beg ins with two null
c har ac t ers to pr e ven t t he PR INT ING utility from li st in g th em. For thi s
reaso n, Lin e O must a lw ays be replac e d before atte mptin g to LOAD or
SHOW.

microFORTH PRIMER Page 19

To display the cont ents of a screen, use the word LIST • For exa mple,

120 LIST

formats Screen 120 into s ixteen lines of sixty - four characters eac h a nd
displays them on the terminal. LIST also remembers the current screen so
that once you hav e listed a screen, you may re - list it by simp ly typing L .
L looks at the conte nts of the user vari ab le SCR , which cont a ins the
screen number of the current screen. LIST is available at all times on the
system.

2.2 THE EDITOR

The conventions for the EDITOR are ident ical to the conventions for t he rest of
FORTH. On most mic roFORTH syste ms the EDITOR is resident. On these, to
gain access to the EDITOR, simply type:

EDITOR

On the RCA COSMAC, however, the EDITOR is not resident and must be loaded
by typing the command:

EDIT LOAD

On all microFORTH syste ms, you re tain access to the EDITOR until you compile
a definition. After compiling a definition, you need to invok e the EDITOR
vocabulary again if you are to use it . On the COSMAC only, if you have load ed
an app lication that replaced the EDITOR, you must reload it (s ee Sect ion 2.5,
"Overlays").

Within the EDITOR you can ca ll on two types of ed itin g words: those that
operate on whole lin es and those that work on characters. Screen 14 contains
the former and Screen 21 the latt er.

2.2.1 Editing~ Line

In Line O of eac h scree n th at contains so ur ce text, it is a FORTH
convention to place a parenthetical comment that bri efly describes the
content s of th at scree n . Com men ts are written in FORTH in the following
form:

(COMMENT)

The word (starts a comment; one or m ol'e spaces must fo ll ow the left
pa1·enthesis because (is a word. The succ eed ing chara cters are ignored by
FORTH until the next r ight parenthesis. The PRINTING utility (descr ibed
in Sec tion 2. 4) can produce a co nven ient disk ind ex for you by disp layin g
the first line of eac h screen, preceded by its screen number.

After list ing a scree n into which so ur ce text is to be entered and ga inin g
access to the EDITOR, ent er a lin e of text in the current screen by typing:

0 P (PRACTICE SCREEN)
12 P THIS IS OLD LINE 12

microFORTH PRIMER Page 20

Here zero is the first lin e numb er to be e nter ed and P (for Put) is an
EDITOR command which puts the following lin e of t ext (up to th e carriage
return) in th e des ignat ed lin e. In this exa mpl e , you have put a co mm ent
line at the head of a scree n and the text, "THIS IS OLD LINE 12, 11 in Line
12. If you ente r fewer than sixty - four charactet's of text for any one lin e
number, th e remainder of th e lin e is blanked. If more, your text will be
t runcat ed to sixty - four characters.

Note that because P is a FORTH word, you must space once before you
type the text. Any additional spaces, how eve r, are includ ed in th e text to
b e in serted. If you ha d spaced four tim es afte r the first P in the
exa mpl e abo ve, Line O would hav e begun with thr ee blan l< spaces before the
left parenthesis .

When using P ~..!! im portan t to enter !.!_ l east one character .2.!_ act ua l
text. For inst anc e, to blank a lin e you must type at least two space s after
1ne P , one as a delimit er and the other as text. This rule also applies to
the EDITOR word A .

The EDITOR provides capab iliti es to display individu a l lin es as well as to
replace, insert, or delete lin es. To impl ement these features, the EDITOR
uses a sixty - four - c haracter buff er , ca ll ed PAD. The P co mmand, for
example, puts the succeed ing text not only in the lin e whose numb er is on
the stac k, but a lso in PAD. (Not e that the next t ext written to PAD
overwrites, i. e., destroys, this text.)

The EDITOR word T is used to Dpe out (di splay) the lin e whose numb er
is on the stack. Spec ific ally, T does the following things:

1. Transfers the line whose numb er is on the stac l< to PAD.

2. At the beginning of the next lin e on your terminal, indents two
spaces a nd types the lin e now in PAD. (Th e OK appears
after the sixty - fourth charact er.)

3. Leaves the line number on t he stac k.

T is spec ifically designed to be used in conj unction with P in modifying a
previously ent ered lin e. Note that the lin e numb er is left on the stac k , so
i t need not be re - ent e re d. Also, the typed lin e is ind ented two spaces,
leaving room for a P a nd a space on the next lin e on the terminal so
t hat you can eas ily copy down the text in para ll el, making correct ions. For
example, try this (remember that t he computer 's response is under lin ed):

12 T
THIS IS OLD LINE 12

P THIS IS NEW LINE 12 OK
12 T

THIS IS NEW LINE 12

OK

OK

The EDITOR word R will Replace the lin e whose numb er is on the stack
by the contents of PAD. For exa mpl e, to make Lines 12 and 13 identical,
you type:

12 T 13 R

If you want to blank out several lin es, you can us e a combinatio n of EDITOR

mict•oFORTH PR IMER Page 21

word s P a nd R • After suc h a co mmand as 1 P fo ll owed by t wo
spaces and a car l'iage r et urn, you s im ply declare t he oth er lin es t hat yo u
want to be Rep laced:

1 P OK
2 R ~ R OK

converts Lines 1, 2, and 12 to spaces.

The EDITOR wot·d D is use d to Delet e th e lin e whose num be r is on th e
s ta ck . The dele ted lin e is fiest moved to PAD so th at it is not act ually
lost. The succeed ing lin es in t he sc reen are mov ed up one and eenum bered.
Line 15 re mains t he sa me a nd is not blanked. For ex ample, 13 D will
move Lin e 13 to PAD, mov e Line 14 to Lin e 13, and dupli cate Line 15 as
Line 14. Never use D on Line 15! If you want to bla nk Line 15, use R
or P ; if you want to copy it elsew here , use T and then I or R .

The line in PAD ca n be Insert ed by t he EDITOR word I . Th e contents of
PAD a re inserte d in t h e nex t lin e after t he lin e whose numb er is o n th e
s tack, Succeed in g lin es ar e mov ed down; Line 15 is lost. Never try to
inse rt af t er Line 15; to inse rt text as Line O, use - 1 I .

D a nd I ca n be used to mov e lin es of text from one place to ano th er.
To exc hange Lines 4 and 5, for inst anc e, all you nee d to do is type:

4 D Put s Lin e 4 in text buff e r and mo ves succeed ing l in es up
one.

4 I Inse rt s it after t he new Line 4 and mov es succ eed ing lin es
down one.

This exa mpl e was put·pose ly used to illu s trat e an import ant point about D
a nd I . A lin e numb er refe rs to t he curr ent posit ion of a line within a
sc re e n. Beca use D and I move lin es beyo nd t he po int of inse rt ion or
del et ion , th ey effec tivel y renum ber all subse quent lin es . Whil e you co uld
ge t in the habit of always relistin g th e CUL'rent sc ree n after eac h and e very
use of D or I , thi s is t edious if your termin al is, say, a te lety pe. You
should acqu ire t he hab it of always visuali zing the effect of t hese words as
you type th e m.

The word A (fot· Add) co mbines some of th e prop er t ies of I and P . A
e xp ec t s a lin e numb e r on t he stac k , after whic h a lin e of text will b e
inse rt e d. The lin e of text to be in sert e d is not yet in PAD, how eve r ;
instead, yo u must e nter it after t he A and a space . As wit h P ther e
must be at leas t one charac t er of act ual t ext ; as with I , a ll succeed ing
lin es a r e mov ed down a nd Lin e 15 is lost. The t ext is terminated by a
car ri age ret urn.

To summ ari ze , th e vocabu lary for editin g lines includ es the following words:

microFORTH PRIMER

n P text

n T

n R

n D

n I

n A text

Page 22

Puts succeed ing t ext (until ca rria ge r et urn) in PAD
and Line n .

Copies Line n into PAD, ty pes it, nnd leaves n on th e
stack.

Replaces Line n by the cont ents of PAD.

Copi es Line n into PAD and dele tes it from th e
current screen . (Avoid 15 D .)

Inserts th e contents of PAD aft er Line n.
(Avoid 15 I .)

Put s succ eed ing t ext (until carriage re turn) in PAD
and inse rt s it aft er Line n. (Avoid 15 A .)

A littl e practice with these comma nds will make them your tools .

While you are edit ing, some portions of the scree n you are working with ar e
in main memory and some of them may be back out on the disl<ette. To be
certa in that all your changes get out on th e diskett e, you nee d to type:

FLUSH

to force writing the buff ers to dis l<. This is m est import ant befor e
exec utin g a new definition, r e moving a disl<ette, or shuttin g down your
syste m.

2.2.2 Editing Q,Y. Character

In th e EDITOR vocabulary ther e are also comma nds for editing char acters.
The character editing commands opera t e on str ings within a se lec t ed line. A
character point er reminds you of your position on a spec ific line.

The co mmand T position s th e character poin t er to th e beginnin g of a
line. Thus 1 T pri nts Line 1 of your scr een . The command TOP will
pos ition th e character point er at th e beginnin g of t he sc ree n (e.g. , the
first c haracter of Line 0) . The character posit ion in th e scree n is
controlled by the user variable R# . It is used to comput e the line number
and to control wher e searc hes beg in. The following co mmand s are
availabl e. (Rememb er thes e are FORTH words and therefore they must be
separa t ed by a space from any text following them.)

F te xt

N

C t ext

F inds the next instance of 11text 11 after th e c urr en t
pointer pos ition. Pr ints th e line on whic h it occurs
and pos iti ons th e character point er at the character
af t er "t ext. 11

Finds th e next occ urr ence of 11text 11
(used after F);

prints the appropriate lin e ; a nd posit i ons the
char acter point er a t th e character that imm e diate ly
follows the t ext.

Inserts 11text 11 at t he cur ren t pointer position in the
current line.

microFORTH PRIMER Page 23

X text

TILL text

Finds and deletes 11text 11 from the curTent scree n. The
searc h fo1' 11t ext 11 begins at the current pointer
position .

Delete s all characters through and inc luding 11t ext ,11

beginning at the current pointer position . TILL only
operates within the curr ent line.

As stated ear li er, mo st character editing com m ands operate within the lin e
pointed to by R# . To co mput e the line number, divide R# by sixty - four
(th e number of charact ers in a lin e) .

The commands F , X , and N are not limit ed to a single lin e; multi ple
lines are searc hed, begi nning at t he current pointer position. However, the text
may not cross a lin e boundary, i.e., with portions on two different lines .
Searches are performed on a line-by-line basis.

C also operates within the lin e pointed to by R# . Therefore all character s
are lo st which are moved b eyo nd the lin e limit of s ix ty - four character s.
Lastly, any error message will reposition the pointer at th e top of the screen.

The following is an exa mpl e of how the chara cter ed iting words operate. In
thi s exa mpl e the computer's output will not be und erli ned. Inst ead the
undersco1·e here represents the one you see on your screen whil e you are
editing; it indicate s the point er to the current character. Another convention
adopted only for this exa mple is the use of th e symbol er to show the point
at which the ca1·riage return button was pressed.

2.2.3

Given:

TOP X TEXTcr
THIS IS SOME

C TEST!cr

0 THI S
1 THIS
2 THIS

THIS IS SOME TEST!

X lOcr
THIS IS LINE

F THIS IScr
THIS IS NOT LINE

X NOTcr
THIS IS LINE 2

COPYing

IS SOME
IS LINE

IS NOT

2

TEXT
10
LINE 2

0

0

1

2

2

Besides these words which you use to work on individual lines, the EDITOR
includes anoth er word that allows you to copy one ent i1'e screen to anot her:

from to COPY

microFORTH PRIMER Page 24

where from and to are screen numbers. CO PY is useful when you want to
modiffaprogram slightly without des troying the original. Another use of
COPY is to delete a sc reen by COPYing a blank screen on top of it .

A word of caution: it is best to use the command FLUSH both before and
after each use of COPY . The word CO PY only changes the block ID
in the block buffer and marl<s the block for writing. Thus for systems with
eight or more block buffers:

120 121 COPY 121 122 COPY
(followed by a carriage return)

FLUSH
(followed by a carriage return)

copies Screen 120 to 122 only, leaving Screen 121 unchanged. In other
word s, Screen 120 was read into the block buffers; its IDs were changed to
match Screen 121 (since no FLUSH was specified, the change was not
writt e n ·to the diskette). On the sec ond CO PY , Screen 121 already
existed in memory so again no writing occurl'ed. Only the block IDs
changed to match 122. FLUSH forced only the new Seme n 122 out to
diskette.

2.3 LOADING MULTIPLE BLOCKS

When you have a good application program stored away on diskette, you can
begin your testing and debugging phase. If your source text is in Screen 120,
you compile it with:

120 LOAD

When you hav e multipl e screens in your program, you will want to us e one
sc reen to load the whole program at once. For exa mple, you might edit into
Screen 102 the commands:

120 LOAD 121 LOAD 122 LOAD

Then, to load in the entir e application, you type 102 LOAD •

2.4 THE PRINTING UTILITY

The PRINTING utility (not to be confused with PRINTER) allows you to display
source text and generate an ind ex to your listin gs. The basic format unit of
three screens fits the usual 8 1/2 by 1111 printed page (of s ixty or so lin es) . To
obtain access to PRINTING, type:

PRINTING LOAD

Three important wor~ that are loaded by this command are TRIAD , SHOW ,
and INDEX •

TRIAD generates a list of three screens on a s ingle page. The screen number
of the top screen in a triad is always evenly divisible by three. TRIAD types
t he triad of screens that includes the screen number you put on the stack. Thus
typing 3 TRIAD , 4 TRIAD , or 5 TRIAD produces the same output.

microFORTH PRIMER Page 25

The phrase:

n m SHOW

ge nerates a ll tr iads n ecessa ry to show th e rang e of screens from n t hrou gh m
inclusiv e.

The phrase:

n m INDEX

produces a n ind ex of the scree ns in t he ran ge of n through m - 1. The ind ex
co nsists of the first lin es of the requested scree ns, preceded by t he screen
numb er. The index is for matted sixty scree ns to a page.

In the PRINTING utility, Line 14 of Screen 23 is pr in ted at t he bottom of each
page of output. You may wish to ed it appropr iate informat ion into t his line,
such as your company 's nam e and/or th e date.

If you use a TTY, can use th e m ic ro FO R TH PR INTER scree n on some ot her
printing dev ice, or hav e writt en a pr int er driver, you can direct t he listings to
t he pr inter by ty ping:

PRINTER LOAD

before PR IN TING LOAD . Th e PRINTER sc r ee ns re - define t he input and
output words to access a ha.rd-copy dev ice.

2.5 OVERLAYS

On your de velop ment sys t em, yo u may defi ne severa l applicat ion vocabu lar ies
which you may not wish to be comp iled all at t he sa me time (in deed, they may
not a ll f i t) . An o ver lay is an applicat ion vo cab ul ary whi c h, when lo aded,
autom ati ca lly replaces t he pre vious app licat ion.

Overlays are impl eme nted as follows. The last definition in the res ident FORTH
syst em is th e null def init ion:

: TASK

All user - def in ed words will be loa ded after TASK • If a load screen begins
with the phr ase:

FORGET TASK : TASK ;

then all dictionary entri es from TASK on are "forgotten " from the dict ionary.
The null def inition : TASK ; is t hen put ba ck in the dict ionar y to mark t he
beginning of th e overl ay. Conventionally th e phr ase:

FORGET TASK : TASK;

appears in Line O of t he load scree n (aft er t he descriptive comment), so t hat it
will identify this scree n as t he load screen of an overlay in an index . See the
PRINTING utility (Screen 27) for an exa mpl e of such an overlay .

microFORTH PRIMER August 1978 Page 26

On any system, the use of ov erlays in s ur es that t he def inition s of each
app lication are made in terms of the initi al, standard set of microFOR TH wm·ds
rather than in term s of any new meanin g that anot he r vo cab ular y may have
given to a particular word. This will happ en autom atically if you ad he re to the
co nvention of usi ng FORGET TASK : TASK ; at th e beginning of each
application vocabulary.

On RCA COSMAC syste ms, due to the limited amount of memory available, this
is especia lly important; the EDITOR here is a n overlay that needs to be
replac ed by your application vocab ulary.

EXERCISES

1. Enter some text, s uch as a series of punch lin es to jok es or
nam es of friends, into eac h line of your practice screen.

2. Exerci se until you ca n quickly:

a. Exchange Lines 13 and 14 (with no duplication of text).

b. Return your scr ee n to its previous state.

c. Exchang e Lines 15 and 13.

d. Exchange Lines 15 and 0. Repea t.

e. Blank Line 15.

f. Replace Line 5 with br and new text, two diff e rent ways.

3. Blank Lines 1 through 15 of your practi ce screen.

Add t he conventional phrase to th e first lin e that will mak e this
screen a sample overlay.

Using suc h FORTH words as the ar ithm et ic operators (Table I),
th e stack manipulators (Table II), and others from Appendix A,
c rea t e at least thre e new words .

Ent er your definitions of 2DUP and th e new words into the
practic e screen.

Rev iew Table VI, "Editin g Convention s," and check th e scree n.

Load it.

Test and debug it.

microFORTH PRIMER Page 27

n A text

C text

n D

F text

n I

N

n P text

n R

n T

TILL t ext

X text

Table IV. EDITING COMMANDS

Puts succeed ing text (until carriage return) in PAD and
inserts it after Line n. (Avoid 15 A •)

Inserts "t ext " at th e curt'ent pointer position in the current
line.

Copies Line n into PAD and deletes it from the curr ent
screen. (Avoid 15 D .)

Finds the next inste.nc e of "t ext " in the screen after the curr ent
pointer position. Prints the lin e on whicti'""1t"occurs and
positions the character pointer to the character after "t ext. "

Inserts the contents of PAD after Line n. (Avoid 15 I .)

Finds the next occurrence of "text " (used after F); prints the
appropriate line; and positions the character pointer to the
character that immediat ely follows the text.

Puts succeeding text (until carriage return) in PAD and Line n .

Replaces Line n by the cont ents of PAD.

Copies Line n into PAD, types it, and leaves n on the stack,

Deletes all chara cters through and including "text ," beginning at
the current pointer position. TILL only operates within the
current lin e.

Finds and deletes "t ext " from the curr en t sct'een. The searc h
for "text" begins at the current pointer position.

microFORTH PRIMER Page 28

TABLE V. EDITING CONVENTIONS

At FORTH, Inc . we have evolved convention s for editin g sc ree ns to make sour ce
t ex t mor e l'ead abl e . While th ese convention s ar e not dic tat ed by th e natur e of
FORTH, we recomm end th em as good programmin g prac ti ce.

1. Line O of each scr een begins with a parenth etical comm ent that
describ es the cont ent s of th e scr ee n. The comm ent identifi es
th e s cr ee n and is conv eni e ntly li s ted by th e PRINTING
utility' s INDEX .

2. A single scree n cont a ins sour ce tex t for word s relat ed to som e
on e fun c tion or isolat abl e po r tion of a fun c tion. Do not put
unr elat ed wor~ in th e sam e sc ree n.

3. Do not ov e rpack a s cr ee n . Le av e several blank lin es for
expansion. There is no advanta ge to conserving scree ns.

4. Do not define mor e th an on e word on a lin e . An exc eption
might b e two or thr ee r elat e d con s tant s or vari abl es , or a
couple of very brief relat ed colon definition s .

5. Leav e thr ee sp aces a ft er th e name be ing de fin e d in a colon
definition, to se t it off from the def inition .

6. Br ea k colon def inition s up into phra ses , se p a ra t ed by doubl e
spaces , so th at each phrase desc rib es a parti cular operation :

: DOUBLE X @. 2* X !

7 . If a definiti on t akes mor e th an one lin e , indent thr ee or mo re
spaces on th e sec ond and succee ding lin es .

8. Separa t e instru ction s in CODE de finitio ns with thr ee spaces . For
exa mple:

CODE KEY
F 6 INP

BEGIN
A L MOV

F7 INP 2 # ANA O= NOT END
0 H MVI HPUSH JM P

The def ini t ions and sc reens in Chap t er 5, as well as the list ings th at acc om pany
you r mi cro FO R T H sys t e m, provide good exa mpl es of we ll - orga ni zed F ORTH
sc reens.

3.0 DATA DECLARATIONS

Frequently it is usefu l to set a s ide cells in m emory to reserve constants,
vari ables, and arrays . There are a sel'ies of words in FOR TH that allow you to
allocate these types of data structures. This chapt er discusses the appropriate
commands.

3.1 CONSTANTS

If a value is used frequently or if a valu e is associated with a specific
function, you mig ht want to name it. Often the name is easier to recall and
ent er correctly than is the numb er it self. A nam ed value is a constant and
CONSTANT is the FORTH word used to assign dictionary names to constants.
For exa mpl e, if you are converting miles to feet, you can define a CONSTANT
named FT/MILE • Thus,

5280 CONSTANT FT/MILE

creates the new word FT/MILE and assignes it the valu e 5280.

After FT/MILE has been defined, you can use it just as you would 5280 to
place a valu e on th e stack. That is, if you type FT/MILE , the valu e 5280
will be plac ed on th e stack. The phrase:

FT/MILE 3 *

computes the numb er of feet in thr ee mil es. Once a value is defined as a
CONSTANT, its binary value is indep endent of the current number base.

3.2 SIXTEEN-BIT VARIABLES

A valu e which changes frequently is called a variabl e . The FORTH word
VARIABLE nam es a location whose valu e is lik ely to change. For instance, you
might want a variabl e to kee p track of the number of customers who hav e
walked into a new store. You can do that with a statement like:

0 VARIABLE PATRONS

which means "define a variabl e nam ed PATRONS with th e initial valu e 0. 11

When you invoke a constant by it s nam e, its valu e is placed on the stac k .
Invoking a variable, on the other hand, places its address on the stack. After
placing th e address of PATRONS on the stack, you will so met im es wish to
obtain the co nt ents of PATRONS . The FORTH word @ (ca ll ed "at " or
"fetc h") replaces th e address on the stack by the contents of the two bytes at
that add ress . To get the curr ent number of custo mers into the top of th e stack

micr oFORTH PRIMER Page 30

for process ing, you writ e:

PATRONS@

Sometim es you nee d to exa min e th e cont ents of a vari able. Th e FOR TH word
? (ques tion mark) put s th e curr ent valu e on th e sta ck and shows it :

PATRONS ? 0 OK

Th e word
loc a tion.
addr ess to
VARIABLE

(call e d "stor e ") is use d to s tor e a s ix t ee n- bit valu e into a
! uses th e valu e , which is th e sec ond it e m on th e st ac k, and a n
s tore into, which is on t op of th e s ta ck, to alt er th e cont en ts of a

If you writ e,

5 PATRONS !

FORTH will stor e the value 5 into th e VARIABLE named PATRONS •

To put wha t e ver valu e is curr ently on th e top of th e s tack into a sp ec ifi ed
location, th en, you merely nee d to spec ify th e addr ess (by na me) and invok e th e
! operator:

(variable- nam e) !

The FORTH word +! (call ed "plus-stor e") adds a new valu e to a vari abl e:

101 PATRONS +!

In th e sam e manner as , +! inc rement s the cont ent s of the it e m whose
addr ess is on top of th e stack by th e sec ond i t e rn on th e sta c l<. Aft er th e
operation s above, th e new valu e of PATRONS will be 106 .

To copy data from on e plac e in me mory to anoth er, sa y from th e vari abl e
OLDPATRONS to PATRONS , you can use th e sequence:

OLDPATRONS @ PATRONS !

Se t up your own va ri abl es and use th ese op erator s (@
until you underst and how eac h works .

? a nd +!)

One of th e surpri sing aspects of FORTH pr ogramming is how few CO NSTANTs or
VARIABLEs a re nee ded, Since th e param eter stack is use d to hold values which
nee d not be named or nee d not t ak e up dic tion a ry space , th e n ee d t o de fin e
ever y lit eral or t empor ary value as a CONSTANT or VARIABLE is elimin a t ed.
Only fundamental para met ers in an applicat ion will need dic ti onary space .

The most com rnon fa iling of in experi ence d F ORTH programm ers is exc essiv e use
of cons t ant s and va riabl es. To rea li ze the most value from yo ur rnicroFOR TH
system, try to be ale rt to thi s t endency and res ist it .

3. 3 BYTE VARIABLES

Ju st as @ and t ra nsfer da ta in s ix tee n- bit uni ts be t wee n th e st ac k an d
me mory , th e FORT H words C@ (byt e fe tch) and C! (byt e stor e) t rans fe r
data in eight-bi t byt es . Eight - bit numb ers occ upy th e low-or der half of a stack
entry. C@ fet ches a single byt e from the l oca ti on specified by the top of the
stac l< and puts a zero into t he high-ord er byt e (to fill out t he st ac k entry) . C !

microFORTH PRIMER Page 31

t akes the lo w- ord er byt e of the seco nd stack i tern a nd stores it int o the byte
addressed by the top it em, deleting both ite ms from th e stack.

As one might ex p ect on mi croprocessor systems, the byte fetc h a nd store
operations are both faster and mo re co nser vative of m emory th a n their
s ixteen -bit count erparts. This mak es a noteworthy differ ence b etwee n FOR TH
and other hig h- level language s. FORTH do es not discriminat e between data
typ es by context but rath er by th e operators that are used to manipulat e th e
data. Thus a sixtee n-bit named variable could co nt a in e ith er two characters of
a word, or two e ig ht - bit binary numb e rs (su c h as a byt e vector), or a
sixteen -bit binary number. Its usage depend.g upon the operators that you choose
to man ipul ate it s data . This met hod produces more readable definitions, mor e
effic ient exec utio n, and more flexible programming .

Byt e var iab l es ca n be d ec lar e d in a ma nn er s imil ar to their s ixteen- bit
co unt erpar t s by us ing the FORTH word C VARIABLE . Ju st as VARIABL E
does, CVARIABLE needs an initi al va lu e on the stac k, fo llow ed by the nam e
being defined. The space use d, however, is only one byt e wide, which limits you
to numb ers in th e range O to 255 . Often this ra nge is mor e than you need. If
you wanted to k eep track of the curre nt channel numb er to which a particular
TV se t was tuned, you could use:

n CVARIABLE CHANNEL

where n represents th e initi al chann el number. (The numbe1· of TV chan nels
would never excee d 255.)

After a CVARIABLE is defined the operators C@ and C ! may be used on
th e m. Mixing C@ C ! @ and +! b e t ween defi nition s is
perfectl y legal. Be sure, however , that you und ers t and exactly what result you
int end to achieve.

3.4 ARRAYS

Arrays of data it ems are import a nt in many applications. For exa mpl e, instead
of handlin g a set of ten different temperature r ea dings as TO, Tl, ... , T9, it
would be b et ter to use t en succ ess ive dat a eleme nts named TEMP . Through
suitable addressing arithmetic you can co mput e the requis it e element' s address.
This is mor e fl ex ibl e to program as we ll as mor e ec onomical of dictionary
space .

An array is established by se ttin g as ide space in the dictionary . This is done by
using th e FORTH var iabl e H , which point s to th e nex t available byt e in the
dictionary space in m emory . By in c r e m en tin g H you ca n s kip ov er a
speci fi ed numb er of byt es, thu s creating sp ace for th e appropriate numb er of
elements. In the case of a set of t empera tur es, you simply writ e:

0 VARIABLE TEMP 18 H +!

where:

microFORTH PRIMER

0 VARIABLE TEMP

18

H

+!

Page 32

Defines a VARIABLE (two bytes wide)
named TEMP and ini t ializes t hat space to
zero.

Puts 18 on the stac l<.

Fetches th e add ress of H ; i ts co nt ent s
point to the next byte after TEMP .

Increments th e cont ents of H by 18, thus
preserving an addition al nine byte -pairs for
the other nine temperature read ings.

By using the co mman ds HERE and • (dot), you place the c ut•re nt dictionary
point er on the s t ac k (HERE) and printed (by th e dot). If you use these
commands before and after the definition of your array, you can verify that H
is act ually incr·ement ed. That is:

0 VARIABLE TEMP HERE 18 H +! HERE •

After t he dictionary entry is made, H is printed; after I-I is update d, H is
pr int ed aga in .

To access t he nt h temp em ture, then, place n on top of t he stac k and fo llow it
with:

2* TEMP + @

The word 2* is used to co nvert the co unt in byt e- pairs to byt es . This offset
is then ad ded to the a ddr ess provided by TE MP ; finally, the value at t hat
address is fetched by @ • Beca use t he ele ments ar e numb ere d from zero, for
ten temperatures the co unt must be in th e range ze ro through nin e; ot her values
will give unpr ed ictab le numel'ic results.

To initialize the nth t emperature, typ e:

(value) n 2* TEMP +

place s th e valu e ent ered into th e nt h entr y in the array .

3.5 OTHER MEMORY OPERATIONS

Ther e are two words whic h ca n be used to manipula te memory locations. They
are MOVE and ERASE .

ERASE is used to zero a reg ion of memory:

address length ERASE

ze roes the region that beg ins at th e addre ss spec ified, for the spec if ied lengt h
given in bytes .

MOVE is used to tr ans fer a region of memory to anoth er locat ion:

source-a ddress des tin ation -addr ess #bytes MOVE

mov es t he numb er of byt es spec ifi ed, b eg innin g a t th e sour ce addr ess , to the

microFORTI-1 PRIMER Page 33

destination address. The contents of the destination region are overwritten; the
sour ce region remains the same.

Because they are destructive writes into memory (where the dictio nary resides),
these words must be used extremely carefully. When a region of memory is
spec ifi cally reserved, however, as with arrays or block buffers, ERASE and
MOVE can be used to initialize arrays or to copy arrays from one place to
anot her.

In the example used above,

TEMP 20 ERASE

clears t he temperature arrays.

Defining a second array:

0 VARIABLE 2TEMP 18 H +!

and using MOVE

TEMP 2TEMP 20 MOVE

would copy the array in TEMP into 2TEMP.

EXERCISES

1. Define EXCHANGE to exc h ange t h e conte n ts of two
variables. That is, if A and B are variables, then the
result of the command A B EXCHANGE s hould be to place the
value of A in B and the value of B in A .

2. Define TRANSFER to mov e data between two arrays of the
same lengt h. (Defi ne CONSTANT to spec ify a length.)

3. Using the a t·1·ays defined above, clear the f irst array and
TRANSFER the initi alized array to the seco nd array.

microFORTH PRIMER Page 34

WORD

@

?

+!

C@

C!

H

ERASE

HERE

MOVE

Table VI. MEMORY OPERATORS

DESCRIPTION

Fetches th e contents
of the i tem whose address
is on the top of the stack.

Stores t he second it em
on t he stac k in to t he
l ocat ion whose addr ess
is on top of the stac k .

Fetches, prints th e contents
of th e locat ion whose address
is the top stack it em.

Increm ents the loc at ion
whose addre ss is on top
of the stack by the
second it em on the stack.

Fetc hes a byte whose
address is on top of t he
st ack. The byte is rig ht ­
ju stifi ed on t he stack .

Stores a byte int o t he
location whose address
is on top of the stac k.
Only t he r ight- most byt e
is stored.

Poin ts to t he next availab le
byt e in t he dictionary .
(H i s a var iable .)

Zeroes memory at the
addr ess given for the
number of byt es specifi ed.
Use: adr. count ERASE

Plac es t he address of t he
next available byt e in th e
dictionary on the stack.

EXAMPLE OF
STACK BEFORE

top
'V

2000

3 2000

2000

101 2000

2000

254 2000

empty

2000 6

empty

Moves bytes from one 2000 2006 6
l ocation to anot her:
source-adr. dest. - adr. MOVE

EXAMPLE OF
STACK AFTER

~op

257

empty

empty

empty

1

empty

empty

empty

3576

empty

4.0 CONDITIONAL BRANCHES AND LOOPS

Many definitions execute words (made up of other definitions), one rig ht after
anot her. However, it is often necessary to alt er the order in which words are
executed in a def inition so that, for example, words may be replaced without
being re - typed. This is accomplished by using the FOR TH structures for loops
and conditionals. Loops cause a sequence of words to be repeated a specified
number of times; conditional structures allow the application to choose a
sequence of words based upon a given test (or condition). The following words
comp il e logic which alters the execution of words within a def inition :

IF .. . ELSE . .. THEN

DO ... LOOP or DO ... +LOOP

BEGIN ... END

IMPORTANT: NO loop or cond ition al structure can be exec ut ed directly from
the terminal with out being in c lud ed inside a definition. The control words
li sted abo ve are designed to comp il e appropriate logic control and t hus are
mea ningless if used outside a definition.

Remember this rule:

RULE 6: COMPILING WORDS MUST NEVER BE USED OUTSIDE
A DEFINITION.

This chapter contains discussions of various cond itional structures, loop s, and
related matters; eac h discussion is capped by appropriate exercises.

4,1 CONDITIONAL BRANCHES

Three com piling words, IF , ELSE , and THEN are used to com pile
cond itional branches in a definition. In FOR TH, condit iona l branches examine
the top of the stack to decide which branch will be taken. A conditio nal branch
has the following struct ure:

: DEFINITION condition IF this ELSE that THEN cont inue

where:

microFORTH PRIMER

DEFINITION
conclition
IF

this

ELSE
that

THEN
continue ;

August 1978 Page 36

Plac es a condition (non-ze ro/ ze ro) on th e sta ck.
Remov es and te st s th e numb et' on th e stack .
Execut es 11thi s11 if th e numb er was non-ze ro

(true).

Exe cut es 11that 11 if th e numb er was ze ro (fals e).

Continu es from both lines.

IF mark s th e place where th e top of the stack is popped and examined; if t he
value is non -zero, everything up to ELSE is executed -- at ELSE , exe cution
sldps to THEN . On the other hand, if the stack valu e is zero ev erything up
to ELSE is bypassed and everything after ELSE up to THEN is execut ed.

RULE 7: EVERY IF MUST BE FOLLOWED BY A THEN •

For exampl e , you could print non -zero numbers if you defined • POSITIVE in
this manner:

.POSITIVE
DUP
IF

ELSE DROP
THEN;

Duplicate s th e number.
Tests and discards the top numb er.
Prints it if it is positiv e .
Otherwise drop s it.

It was nece ssary to DUP the number on th e stack prior to the t est b ecau se
IF removes the numb er it tests.

The ELSE clau se is optional. For exampl e, to inc re m en t th e top of th e sta cl<
only if it is non-ze ro, you can define INC :

INC
DUP
IF

l +
THEN;

Duplicat es th e numb er to save it.
Tests it.
Increments it if it is non-ze ro.

The truth valu e on th e stack is often th e res ult of a compari s on that uses on e
of th e FORTH wor ds, < , > , or = • Th ese operators t es t the top two
s t ac k it e ms fo r th e r e la tions 11less than," 11gr e at e r than, 11 or 11e qu a l to,1'
r esp ec tiv ely. They re mov e th e top two it ems which th ey tes t, lea ving on e fo r
tru e and ze ro for false , (Review Table II.)

< Lea ves one if th e second it em is less th an th e top it e m.

= Leav es one if th e sec ond it em equals th e top it em.

> Lea v e s on e i f th e sec ond it e m
it em.

is gr eate r th a n -- th e t op

The c omp ar ison operators obser ve th e so.me FORTH conv ention of Reverse Polish
Not a tion that arithm e ti c op era tor s do. All F OR TH ope rators r e tain th e ir
conv entional mea ning . Thus,

9 5 <
4 2 >

is th e sa me as
is th e sam e as

9 < 5
4 > 2

i .e. , false
i. e . , t rue.

microFORTH PRIMER August 1978 Page 37

For examp le, suppose an input data it em (pla ced on the stac l< by INPUT) is to
be regarded as eith er a decimal digit (if it is < 9) or as a code for an a nalo g
funct ion (if it is ~ 10). Then the definition: -

DECIDE
DIGIT

INPUT DUP 9 > IF
THEN;

PERFORM ELSE

eith er PERFOR Ms the analog function if the IN PUT is greater than nin e or
else saves t he value in the var iabl e DIGIT .

Two add iti onal compar iso n operators are O< and O= , which may be defined:

O<
O=

0 < ;
0 - • - '

to test for negat ive or equa lity to ze ro , respectively. (Act ually O< a nd O=
are defined in machine code while < , > , and = are defi ned in terms of
them.) These operato rs also replace a single arg ument by a truth value.

To negate a co ndition, use the word
rep laces any non-zero valu e by zero.
O= , the def inition of NOT is just:

NOT , which replaces ze ro by one, a nd
Beca use t his is identi cal to the actio n of

: NOT 0- • - '

In the following exa mple we inc lud e a spec ifi c test for ze ro before sto rin g a
data it em:

where:

ITEMS DUP IF DATA

ITEMS

DUP IF
DATA

ELSE DROP
THEN;

ELSE DROP THEN

(The upper limit is on the top of the stack
at entry .)

Tests for the non-zero upper limit.
Stores the value into the vari able DATA

if it is non-zero.
Discards any unwant ed zero.

Sin ce it is co mmon to ignor e zero va lu es during a n operation, microFORTH
provides the word - DUP . It duplicates th e top of the stack only if it is
non-zero. Using -DUP , the definition of ITEMS becomes short er :

: ITEMS - DUP IF DATA ! THEN

In other words, - DUP e limin ates the use of the phrase ELSE DROP . The
de finition of - DUP , by the way, is just:

: - DUP DUP IF DUP THEN

microFORTH PRIMER August 1978 Page 38

4.2 COMBINING TRUTH CONDITIONS

Somet im es it is useful to comb ine severa l truth values . For inst ance, you may
want to exec ut e state ment X only if both parameters on t he stac k are non-ze ro.
Although this is a trivial examp le, it ser ves to demonstrate that two cond ition s
can be met in one definition. The logic al operator s found in Tabl e II are used
in combining truth conditions.

The w01·d AND performs a logi cal "and" of the top two stac k i terns (bit by
bit). This can be used to def ine compound conditions. For exa mpl e, if FROM
and TO are constant s, then you can define BETWEEN :

BETWEEN
FROM OVER <
SWAP

TO<
AND;

Compares the number with FROM •
Swaps the truth value with the number to

be tested.
Compares the number with TO •
Takes the "and" of the two truth val ues.

BETWEEN determines if th e top stac k it em is betwe en FROM and TO ,
exclusive .

Because the log ical "or" function can usually be handled by addition, no specia l
FORTH word is supplied for this, alt hough users, of course, can writ e their own.

Truth values are r ea lly no different from numb ers and m ay b e us ed
arithmetically. Consider thi s exa mpl e, which co mputes (th e characteristic of)
the base- t en logarithm of a number :

EXERCISE

LOG
DUP
9 >
OVER 99 >
+
OVER 999 >
+
SWAP 9999 >
+ •

'

Leaves one if n > 10.
Leaves one if n > 100.
Adds the running s um of the truth valu es.
Leave s one if n > 1000.
Adds to the running sum.
Leaves one if n > 10000 .
Adds to the running sum.

1. Giv en th e constants FROM and TO , define a word named
OUTSIDE that will l eave true on the st ack if th e top it em does
not fall between FROM and TO •

microFORTH PRIMER Page 39

4.3 INDEFINIT E LOOPS

All loops are governed by the valu es on the stack. Here is the struc tur e for an
ind ef init e loop (word s in low er case represent yo ur app licat ion' s named and
tested definitions):

where:

: EXAMPLE BEGIN process condition END continu e

EXAMPLE

BEGIN
process

condition

END

continue

Creates a clictionaL'Y entry for the new
word, EXAMPLE .

Marks the beginning of an indefinite loop.
Defines th e action (s) to be exec ut ed one or

more times.
Leaves a truth value on the stac k, eith er

zero for false or non-zero for true.
Pops the value off the stac l<, ret uming to

BEGIN if the condition is zero .
Continu es exec ution after the loop ends.

BEG IN mark s th e beginning of the loop. The body of the loop (here indicated
by the wot·ds "process " and "condition") is exec ut ed eac h time through the loop.
The body of the loop must lea ve a num er ic valu e on top of the stack; that
value is exa mined eac h time the END state ment is reached. If the value on
top of the stac k is zero (false), the loop is repeated; to t er minate the loop, any
non- zero valu e (true) is placed on the stack. Thus, loop repetition is directly
under program control. When the loop is e nded, the word following END will
be exec uted . END remo ves the number it tests from th e stack.

Suppos e AR RAY is th e startin g address of an ar ray of sixteen -bit entri es
containin g at least one non- zero ent ry. You ca n find the address of the first
non- zero entry by the loop :

where:

: SEARCH ARRAY 2 - BEGIN 2+ DUP @ END

SEARCH
ARRAY 2 -
BEGIN

END

2+
DUP@

Decrements the array address by two.
Begins an indefinite loop .
Increments the address by two.
Fe tch es th e contents while saving the

address.
Ends th e loop at th e first non-zero entt'Y.

In the body of the loo p, 2+ incr ement s the address on the s t ack before the
exam ination of the cont ents of the add r ess. Consequently, you must decrement
the address ARRAY with the phrase 2 - before ent er ing the loop. The loop
terminates when a non- zero entry is found. Notice that DUP preserves the
address on the stac k durin g the loop and that, once the loop is complete, the
last address remains on the stac k.

It is possible to create a si mple program that will exec ut e forever:

: FORE VER BEGIN whatever O END ;

The zero preceding END guarantee s re - execution of the loop body.

microFORTH PRIMER Page 40

Often you will wish to execute some phrase a specified number of tim es (say
ten). That can be done by writing this BEGIN ... END seq uence:

TEN-TIMES O BEGIN phrase 1+ DUP 10 =

where:

END DROP continu e

TEN -TIME S
0
BEGIN

phrase
l+
DUP 10 =

END
DROP
continue

Places a count er on the stack.

Provides the action(s) to be repeated.
Incr ements the counter.
Tests for equality to ten.

Discards th e counter.

Initially, the top of th e stacl< is zero ; after the body of the loop (the usef ul
work) is performed, the counter at the top of the stack is increment ed and
compared to ten. If ten has been achieved, th e END word will cause control
to "drop through" to the nex t word. Otherwise, control will return to the
BEGIN at th e start of the loop.

Notice that there are seven words that must be executed (five of them
repeatedly) to impl e ment this loop . Also, if th e body of the loop needs to add
or remove successive items from the stack, the counter at the top of th e stack
must be accounted for and operated around. In this case a controlled loop
would serve your purpo se bet t er. Controlled loops are discussed in Section 4. 5,
after consideration of the r e turn stack, which is frequently nee ded for the
initiali za tion of controlled loops as well as other operations.

4.4 THE RETURN STACK

As exp la ined in Chapter 1, FOR TH uses two stacl<s. Th e most visibl e stac k is
the parameter stack, which is used to manipulat e para meter value s and me mory
locations. The second stack, the return stack, is used primarily for program
co ntrol. Valu es sa v ed on this stack includ e return addresses for colon
definitions and co unt e r s for controlled loop s. The two stacks segregate
parameters from program contro l valu es so t ha t FORTH code is both mor e
readable and debugged eas ily .

FORTH's use of th e two -s tack archit ectur e came about b ecaus e of t he ha za rds
inherent in conven ti ona l s ingle-stack programs in which parameters, program
addresses, and other control information are all combin ed together in the same
stack . In su ch a syste m operations that should only b e co nce rn ed with
parameters must keep track of other entries in the stac k. When two stacks are
used, parameters and return addresses need never be confused.

There are occasions, how ever, when so met hin g on one of the stacks would be
useful if avai labl e on the other or when one compon ent of a definition requires
one or more numb ers that would oth erw ise be bu r ied in t he parameter stack.
The basic FOR T H voc abul ar y t he r efore in c lud es t hr ee import a nt words for
transferring data from one stac k to anothe1':

,,

microFORTH PRIMER August 1978 Page 41

<R Pops a numb er off the parameter stack and pushes it onto
the return sta ck.

R> Pops a numb er off the return stac l< and pushes it onto the
paramet er s tack .

I Copies th e numb er that is on the top of the return stac l<
and pushes it onto the param eter stack , without changin g
th e return s tack (see Sec tion 4.5 for an exa mpl e of
usage) .

<R and R> ena bl e you to use the ret urn s ta ck as an a uxiliary stac k. Fo r
exa mpl e, you may transfer a numb er to th e return s tack prior to a calculation
which ma kes hea vy use of the parameter stacl<. Sinc e the numb er is on the
return stac k, you can fetch it back without disturbing the parameter stack.
Judi cio us use of <R and R> ca n mak e definitions mor e readab le.

Because the return stac l< is primarily used to hold co ntrol values, there are two
import ant constra int s on your use of it, the first of which is g iven here. Since
the second constraint co nce rn s DO ... LOO Ps , it is g iv e n as Rule 9 (in
Sect ion 4.6).

RULE 8: ANYTHING PUSHED ONTO THE RETURN STACK MUST BE
REMOVED WITHIN THE SAME DEFINITION.

For exa mple, if you define CRASH this way :

: CRASH 0 <R

and then try exec utin g CRASH , you will crash becaus e th e numb e r plac ed on
the return sta ck by <R will b e used by as a return address, with fatal
result s . On the other hand,

: HARMLESS O <R BEGIN 1 END R> DROP

is inde ed harml ess .

Some time s it's a littl e diffi c ult to remember which of the two, <R or R> ,
tran sf ers data to the return stack. FORTH attempts to keep frequently used
words short toavoid len gthy manuscripts. The pictorial valu e of these two
word s is int e nded to suggest movin g data onto (<R) or off of (R>) the
return stack.

Yo u should develop th e habit of r eferr ing to a FORTH Glossary (App endix B)
when you nee d a re minder of the definition of a ny FORTH word.

It is worthwhil e to pause h ere long enough to work out what will hap pe n if you
try to use a formation like:

. .. <R phrase I phrase R> ...

within a definition. Sin ce <R mov es th e top parameter stac l< i te m to the
return stack a nd I cop ies the it e m back onto the pa ra m eter stack, this
co nstruct result s in leav ing the parameter stack with a duplicate se t of what was
formerly its top ite m. This is probably not the effect intended.

microFORTH PRIMER August 1978 Page 42

EXERC ISE

1. Use < R and R > to def in e 2SW AP , to swap the f ir st t wo
byt e pairs on the st uck with th e third a nd fourth pa irs. That
is , aft er :

1 2 3 4 5 2SWAP

the st ac k should contain:

1 4 5 2 3 (wit h 3 on the top) .

4.5 CONTROLLED LOOPS

An alternative def ini tion for TEN- TIME S (from Sect ion 4.3) mak es use of th e
DO ... LOOP construct:

where:

: TEN-TIMES 10 0 DO phrase LOOP

TEN-TIMES
to o
DO

phrase
LOOP ;

Places the loop param ete rs on the stac k .
Transfers th e loop param e t ers to th e

re turn stac k.

Repeat s th e loop t en time s.

The fir st two numb ers are , as a lways , placed on the stack (fir st ten, th en zero) .
The t en bec omes the limit of th e DO ... LOOP ; the ze ro becom es th e initi a l
valu e of the lo op in~ The loop will exec ut e ten time s wi th th e ind ex
startin g at ze ro . The DO word ca uses th e two top wor ds on th e s tack to be
transferr e d over to the 1·e turn stac k; that gets the loop par a meters off of th e
param e ter stac k . After th e body of the l oop is exec ut e d, LOOP will
increm ent the ind ex and compare it with th e limit. If th e ind ex is less t ha n
the limit, the loop is repea t ed. If t he loop limit has b ee n reac hed or excee ded,
th e two val ues are re mov ed from t he ret urn stac k and th e next word (follow ing
LOOP) is exec ut e d.

Somet imes it is usef ul to hav e access to th e loop ind ex in a DO ... LOOP .
The FOR TH word I , which ca n be thou g ht of as Inde x in t he DO ..• LOOP
co nstruct, fetch es th e top of the re turn stac k (wh ere th e loop index is stor ed)
and cop ies it onto th e para meter stack without affect ing the re turn stack. To
print out t en numb ers, from zero through nine , use thi s sequ ence:

: PRINT 10 0 DO I • LOOP ;

where:

microFORTH PRIMER

PRINT
10 0 DO

I

LOOP

Page 43

Transfers the loop para meters to th e ret urn
stack.

Copies th e loop index (0, 1, 2, ... , 9) to the
param ete r stack.

Prints out th e loop index from the top of the
stack,

Incre ments th e index (on the ret urn stack),
compares, repeats t en times.

No ti ce that DO .. . LOOP str uct ur es, lik e t hose using BEG IN ... END ,
ca nnot b e exec ut ed in the imm e diat e mod e; they mu st appear ~ in
definitions of other words.

The loop index and limit don't have to be spec ifi ed in the definition. They may
be the res ult of prior co mputation s or other stac k manipul at ions, just as long as
they ar e on the stac k when DO is exec ut ed. Fre quently, a def inition that
uses a loop r equir es t he upp er limit of a loop to be spec if ied , Suppo se, for
exa mple, you hav e a word call ed READ which reads a single data it em fro m a
device and s tor es it in the next seq uenti al loca tion of an array. You could then
defin e ITEMS :

: ITEMS O DO READ LOOP ;

To read ten it ems, th en, you would type th e desired numb er of readings before
typing ITEMS :

10 ITEMS

The ten would be on the sta ck when ITEMS was exec ut ed and would serve as
the upper limit for the loop.

It is important to remember that any loop will be exec ut e d at least one t im e
because th e in cre ment - and - test function is at th e end of th e loop . It is not
possible to exec ut e a loop zero t imes , only one or more.

Anot her example of a DO ... LOOP you might define at your terminal adds a
new capab ility to your FOR TH sys t em . The word LIST , describ e d in Sect ion
2.2, display s a screen from the diskett e. Sometimes, however, you'd lil<e to
list just a selected range of lin es of th e sixteen availabl e (es pec ia lly if your
terminal is a t ele typ e) . You can now define a new word that will show the
se lecte d lines:

SHOW 1+ SWAP DO CR I SCR @ LINE
-TRAILING TYPE LOOP ;

Do not confuse thi s SHOW with the SHOW in th e PRINTING overlay t hat is
defin ed to per form differently.

This SHOW operates as follows:

microFORTH PRIMER

SHOW
l+

SWAP DO

CR

I SCR@

LINE

-TRAILING

TYPE

LOOP

Then th e corn rnand,

2 5 SHOW

Page 44

Increments the last lin e number.
This insures that it is included in

the loop.
Arranges loop control and begins the

loop .
Outputs a carriage return and line

feed for a new line.
Fetches the line and screen numb ers

for LINE .
Produces the location and count for

the requested lin e.
Reduces the count to omit trailing

blanks.
Types the line, removing the locat ion

and count.
Rep ea ts the loop until done.

will display Lines 2 through 5 of the curre nt sc r een, inclus iv e. This exa mpl e
illustrates the useful phrase 1 + SWAP , used to convert an inclusive range of
numbers in increas ing order to the parameters expected by DO . (Th e phrase
OVER + SWAP can be used in a similar manner to convert a start and co unt
into parameters for DO) •

Another word used to conc lud e loops begun with DO is +LOOP . +LOOP
expects a number on the stack, which it adds to the loop ind ex before compar ing
the index and limit. For examp le, a word called EVEN may may use +LOOP
to print even integers ranging from zero to a spec ifi e d limit:

: EVEN 0 DO I 2 +LOOP

The value 2 placed on the stack before +LOOP is used as th e in crement to
the index, so that the index steps through success ive eve n values. More
complicated uses of +LOOP involve computing the increment for +LOOP in
th e body of the loop.

In use, EVEN produc es the following result:

10 EVEN O 2 4 6 8 OK

microFORTH PRIMER Page 45

EXERCISES

1. Define SUM to add the conte nt s of an array, given its
starting address and length on the stack.

2. Define POWER so that m n POWER comp ut es the n- th
power of m, for non-negativ e n .

4.6 NESTING STRUCTURES

DO •.• LOOP and IF ..• ELSE ... THEN seque nces may cont ain other such
sequences but only if they are properly n ested. That is, one entir e DO •..
LOOP pair may be inside anot h er pair but they may not overlap. The
following loops, printed vert ica lly for clarity, print out number pairs in the order
(1 1), (1 2), (1 3), . .• , (5 3), (5 4), (5 5):

PAIRS
6 1 DO

I
6 1 DO

DUP •
I
SPACE

CR

LOOP
DROP

LOOP;

Counts from one to five (major
loop) .

Fetc hes the major count value.
Counts from one to five (minor

loop).
Duplicates and print s the major loop.
Prints the minor loop .
Separa t es the two pairs with an extra

space.
Types a carriage return at the

terminal.

Discards the old major count valu e.

This definition of PAIRS has one DO ... LOO P co nstru ct ion nested within
anoth er. This brings us to the seco nd nesting rul e:

RULE 9: WHEN NESTING STRUCTURES IN FORTH, YOU MUST
NEST EACH STRUCTURE COMPLETELY WITHIN ANY
OUTER STRUCTURE.

For examp le, you may not use IF to bra nch int o or out of a loop or anot her
cond ition al. Some examples of nesting are given in Figure 3.

Anot her examp l e of nesting is provided by a different definition of EVEN
(Section 4. 5) . This EVEN performs as the first did but in addition ass ur es
that the limit is not zero:

: EVEN - DUP IF O DO I • 2 +LOOP THEN

wher e:

microFORTH PRIMER

Nestin g DO ... LOOPS

RIGHT:

100 0 DO I 1 0 + I D~ OP CR 10 +LOOP

t~ r~is loop Ghis ! refers
to t hi s loop

\vRONG:

x @ o Do I 100 > rFW oP 1'HEN

(/
this i s no t what you h ad in mind!

RIGHT:

[l imit on stack) 100 MINO DO I 50 <
...----._----__

IF ~ ELSE ~ THEN

i t
<5 0 case >50 case

RIGHT:

[limi t on s t ac k) -------- DUP IF ODO LOOP THEN

(prevents exec uti ng loop i f limit i s 0

Page 46

LOOP

NOTE: withou t t he IF, t he loop would ha v e
b ee n exec u ted once

microFORTH PRIMER

EVEN
-DUP IF
0 DO

THEN

I ,
2 +LOOP

Page 47

Checks for a non- zero limit.

Prints the even index valu e.
Increments the loop counter by two.

The complexity of th e actions tak en on either branch of an IF ... ELSE ...
THEN or within a DO ... LOOP structure is virtu a lly unlimit ed. For
examp le, a complete IF ••. ELSE ••. THEN str uctu re may be used wit hin an
IF branch as in this definition of NEXT , which stor es a numb er into the next
empty one of thr ee location s , giv en the numb er and the first address on the
stack:

NEXT
DUP@

IF
1+ DUP @

IF

THEN
THEN
I , . '

1+

Fetches the contents of the first
location.

Tests it for zero.
Fetches the contents of the next

location.
Tests for zer o.
Increments to the last location.

Stores th e numbe r in the fir'st,
second, or third locat ion.

Here we hav e nested one IF .. , THEN structure entir ely within anoth er. This
conforms to Rule 9 given above: when nes ting structures in FORTH, you must
nest eac h st ructur e completely within any outer structure.

EXERCISES

1. How would you define MAX , MIN , and ABS ? (All are
supplied as part of standard microFORTH .)

2. Define FACTORIAL to compute the factorial of a number.

microFORTH PRIMER Page 48

4. 7 RECAPITULATION

The words IF ... ELSE ... THEN, DO ... LOOP , BEGIN ... END , and DO
... +LOOP are all comp ilin g words, That is, they direct the comp iler to build
bra nches within a definition, which will la t er cause the int erpr eter to re - exec ut e
or skip over words in the definition when the defined word is act ually invok ed.
It is the function of th ese wor ds to place it e ms in a definition; th erefo re you
must co nform to Rul e 6: comp ilin g words must ne ver be us ed outside a
defi nition .

The least that can happen by ignor ing this rule is that trash will be left at the
top of the dictionary or stack. The worst is that trash may be deposited into
exist ing definitions, making them unusable.

5.0 SAMPLE PROGRAM DEVELOPMENT

5.1 PROGRAMMING PHILOSOPHY

Und ersta ndin g the problem you are trying to solve is esse nti al to writin g a
successf ul application. Oth erwis e, sitti ng down at a t er minal is lik e drivin g a
great distance without a road map - poss ibl e , but not e ffi cient . In order to
uncover the esse nti a l features of th e desired application, long hours of study may
be required. Some te ntative hardw are /softwar e trad eoff s must be m ade.
Initial decisions need to b e ma de about how much circuitry will be inst alle d for
int er fac es and how much softwar e will be relied upon to control th e var ious
discrete input/output signals . Once the hardwar e confi guration is dec ided upon,
application design and implementation begins.

There are two sc hools of thought in pro grammin g methodolo gy. The first holds
that you should write your pro gra m at your des I<, check it carefully, and th en
use your te rm inal to implement a nd t est it. The other school would pref er that
you writ e the pro gram at the terminal, while you'r e on-line to the developm ent
system. You may choose either (or both), dependin g upon your skills and
willin gness to expe rim ent. Eventually, however, you will ne ed to load in th e
microFOR TH system and sta rt operating.

When the initi al appli cat ion wo1•ds have been t es t ed, you will probably edit t he
sour ce text onto th e diskette using the EDITOR (discusse d in Chapt er 2). An
application na me, such as CONTROL , can be assoc iat ed with sour ce t ext by
e diting a co nsta nt into the diskette directory (usually in Scr ee n 19) . For
exa mple,

120 CONSTANT CONTROL

associates 12 0 with CONTROL ; 12 0 is th e load screen numb er of th e
application (which may, in turn, load other screens). Typing CONTROL LOAD
will then compile your application into memory for testing.

Your microF ORTH developm ent system is primarily a tool for interactiv e program
dev elopm ent. When your application is co mpl ete ly debugge d, the int eractiv e
features, s uch as the compiler and th e diction a ry search capability, are no
lon ger neede d . At thi s point you ca n use th e micro FORTH "cross - compiler,"
descri bed in the micro FORTH Technical Manual, to generate a compact program
to run on your ta rget syste m .

microFORTH PRIMER Page 50

5.2 TOP-DOWN DESIGN

Frequently you can sketch out an applicat ion in rever se. That is, you begin by
writing tentati ve definitions of words to perform th e major functions of your
application. The e ffort of draftin g th ese definitions will clarify for you what
other words need to be written fir st in order fo1· t he major words to work. In
thi s way you cont inue backwards unt il you determine what variabl es, constants,
and basic "buildin g block" definition s you will nee d. Of course, to be loaded
your appli cation will have to be entered, start ing with the simplest definition s
and building up to the most complex. But the top - down approach will enab le
you to identify the most convenient elements to define. The example presented
in this chapter will follow the top -down approach.

5.3 TESTING AND DEBUGGING

You will se ldom writ e a complete applicat ion at once. It is bett er to write and
debug a screen or two of so ur ce text at a time. You can compil e your ne w
definitions and test th em out individually at the terminal, chec king that they
maintain the stack as you des ire and other wise perform correctly. This
faci lit ates debugging by breaking the application up into easily tested modules.

A techn iqu e that is fr equently helpful in testing a partially develop e d
applicat ion is the use of stubs. Stubs are short FORTH definition s us e d
temporarily to define words that the software under test will invoke. Stubs can
be used to simul ate the behavior of hardw are which isn 't current ly connected.
Another use that ar ises with th e top-down approac h is the s imul ation of a basic
word before its final definition is written, in order to debug a word at a higher
level.

5.4 CROSS- COMPILATION

After you have made your entire app lication operate correctly, you may wish to
create an eff i cient subset of it for production use. The mici·oFORTH
cross - compiler is U',ed to generate a final object program that excludes the FORTH
comp iler and ot her featur es that you won't need in the production version of the
system. The microFORTH address int erpret er , however, is included in the final
object program, s inc e it is needed to control the execution of your high-l evel
defin iti ons.

There are some subtle limitations on what is acce ptable to th e cross -co mpil er.
You should read the microFOR TH Tec hnical Manual carefully when you plan to
cross -c ompile. You can safely defer th at r ead ing and und ersta nding, however,
until after you have your program finished; the modifications needed are
unimportant for now.

5.5 THE TV REMOTE CONTROL UNIT

We have chosen th e impl ement at ion of a remote control unit of a television set
as an example (see Figure 4) . The purpose is not to elabor ate any particular
applic at ion but rath er to illu strate the programming tec hniques and development
cyc le discussed above.

In t his exa mple a hand- held remot e contr ol paddle sends out seria l five -bit data
codes to an ultrasonic l'ece iv er in t he televis ion it se lf. Eac h fi ve- bit code
represent s one of t he keys in t he re mote control paddl e , alt hough all thi rt y- two

mi c ro FORTI-1 PR IM ER

cc cc
w w

u. z u. z
I :> I :>
> I- :> I-

.oil~ . ..
~ ,. ~r

-, ex:
I LLJ

..,.I I
~

0 I- I ex: :::> I-, w Q.. ~ - ~ ..._I I :c 0 w

...
u
z 0::
O w (/)> ~-
(C w
I- u
...J W
:> (C

6
~

~-
· ~

(,-.

0::
u. ...Jw
I o -
2: 0:: ~

z I- ...J u. - z 0.. r ~o~
:> (.'.) u ~

.... ...
y

::c
I-
a:
0
LL

Page 51

-0
'­
~

C:
0
0
Cl)
~

0
E
Cl)

0:

>
r"

microFORTH PR IMER Page 52

possible keys might not exist in every model of the hand - held paddle . The
remote control paddle is so designed as to cont inue sending fiv e- bit co des at 100
micro second intervals for as long as a key is depressed. For s impli c ity we
co ns id er only t he c ha nnel se lect ion and volum e contro l function s. These will
a llow us to s how how rnicroF ORTH ca n be used to so lv e different kind s of
problems. To impl e ment fine - tuning, color and tint control, or a n overlayed
display of time on th e TV screen, th e same principles ca n be duplicated in
hardwar e and soft war e .

Following the to p-do wn app ro ac h, we will fir s t lay out the definition of TV ,
th e word which will hav e overall co ntrol of the television. Basically, TV sit s
in an e ndl ess loop, waiting to receive s ignals from the paddle and then acts on
th em. The overall str uctur e of TV will take the form:

: TV BEGIN ... 0 END ;

where O END provide s th e unconditional return to BEGIN .

In th e proc ess indic ated by • .. in th e above definition, the following dis crete
operations will have to be performed:

INPUT

PROCESS

IDLE

Rece ives data from the paddle.

Performs an operation that dep ends upon th e nature
of the input.

Waits for the next operat ion, s inc e the proc ess may
well be co mpl ete be fore the us e r removes a finger
from th e button.

Thus, our full des cription of the process run s:

: TV BEGIN INPUT PROCESS IDLE O END

Now, one of th e card inal rul es of testing is:

RULE 10: NEVER PUT AN UNTESTED ROUTINE INTO A LOOP .

This is because a s ta ck underflow, overflow, or other e rror is eas ies t to diagn ose
and handl e in a s ingle usa ge. When an error is r epea ted many tim es in a loop,
how e ver, it can ca use both more serious fa ilur es and also a mor e confusing
situ a tion to debug . Therefo re , our next ta s k is to def in e and t es t IN PUT ,
PROCESS , and IDLE .

The ro utin e INPUT will wa nt to read a signal. Since t he opera tor may not be
t ransmittin g a s ignal , we will hav e to loop inde f init ely until a s ignal is r ece ived .
Let us proj ec t for ourselves a word READ (which will be defin ed lat e r), to
look for an inpu t valu e from th e int erf ace and r eturn e ith er th e valu e i tself or
els e ze ro if no va lu e is r e ceived. Thi s valu e may b e use d dir ectly as a truth
condition (s ince tru e is defined as non- ze ro).

To a.wait a s ignal we ca n use th e phr ase:

BEGIN READ -DUP END

The word -DUP dup licates a non- zero valu e but l eaves only one copy of a zero
valu e . As long as there is no signal, t he ze ro l eft on the stack will ca use th e
loop to r epeat. On t he ot her ha nd, when n s ignal ~ r ece iv ed th e END will

microFORTH PRIMER August 1978 Page 53

re mov e the cop ied value from the stack, leav ing that va lu e on the stack for
further processing.

Thus we hav e the following definition for INPUT :

: INPUT BEGIN READ -DUP END ;

We ca n si mul ate the behavior of READ by defining a variable to contain a
value from a hypoth et ical paddle and a dummy READ to fetch it:

0 CVARIABLE PADDLE
: READ PADDLE C@ ;

Edit these definitions (PADDLE and READ) into a scree n; eac h mu st be
defined before it is used. Although we h av e d es ign ed this prog ram in a
"top - down" fashion (overa ll co ntrol first, incr eas ing levels of detail later), it must
be loaded and tested in a "bottom -up" order. Use a sepa r ate screen for stu bs
and dummy def inition s; it ca n be replaced by the "r ea l" sc r ee n later with
minimum impact on the application .

Given that these routines have bee n load ed, we can now begin testing:

1 PADDLE C!
READ . 1 OK
INPUT • 1 OK

READ produces a cor rect result.
INPUT also works.

At this point we must test the value received to decide whether c ha nn el
se l ec tion or volum e control is indi ca ted. We will adopt the co nvention that a
numb er < 14 indi cates a c hann e l, wh ereas other codes will be reserved for
variou s other functions, such as volume. The phrase:

DUP
13 >
IF ANALOG
ELSE DIGITA L
THEN

Saves a copy of the input.
Compares it with thirteen.
Perfor ms the analo g function if > 13.
Performs the digital func tion otherwise.

will perform this dec is ion . Here we hav e projected the words ANALOG a nd
DIG ITAL to handle the two cases. Note that we have saved the valu e on the
stac k prior to the t est , so that it will ser ve as the parameter to ANALOG or
DIGITAL •

Now our definition of PROCESS is:

: PROCESS DUP 13 > IF ANALOG ELSE DIGITAL THEN ;

As with READ , we'd lil<e to defer ac tu al cod ing of ANALOG and DIGITAL ,
so we replace them with st ubs whose primary purpo se is to verify which path
was talc en . We 1ll do thi s by having ANALOG identify it se lf by pr intin g a zero
followed by it s value , with DIGITAL printing a one followed by the value. We
print the valu e not only to co nfirm that it is there, but also beca us e ANALOG
and DIGITAL will use (d es troy) the valu e. This is an indir ect way of
demonstrating an import ant rule abo ut st ubs:

RULE 11: A STUB MUST REPRODUCE THE BEHAVIOR OF ITS
INTENDED COUNTERPART WITH RESPECT TO STACK
USAGE.

microFORTH PRIMER Page 54

Thus we hav e:

: DIGITAL O •• 0 PADDLE C!
: ANALOG 1 •. 0 PADDLE C !

The last phrase (0 PADDLE C !) ensures that IDLE (which will use the READ
stub in testing) will find a zero va lu e. After ed itin g and loading the abo ve
definitions (aga in , in bottom -up order), we can test them:

1 DIGITAL O 1 OK
14 ANALOG 1 14 OK

1 PROCESS O 1 OK
14 PROCESS 1 14 OK

DIGITAL was se lec te d.
ANALOG was selected .

The hardw are will perform th e action faster than th e operator can remove a
finger from the key. It is nec essa ry to await an idle before rep eat ing the loop .
Basically, this can be done with :

BEG IN READ NOT END

which loop s until a zero signal indicate s that the previous signal is no lon ger
being read .

Thus our definition of IDLE is:

: IDLE BEGIN READ NOT END ;

This is really the opposite of INPUT and may be tested by us ing the same
stub definition of READ :

0 PADDLE C !
IDLE OK
1 PADDLE C !
IDLE

Returns imm ed iat ely .

Pauses ind ef init ely; use the RESTART
switch to recover.

We may now use our definition of TV , except without th e BEGIN ... END
structur e:

TV INPUT PROCESS IDLE ;

and test it :

1 PADDLE C!
TV O 1 OK

14 PADDLE C!
TV 1 14 OK

DIGITAL was exec ut ed.

ANALOG was executed.

When DIGITAL and ANALOG are coded in more detail, th ese routines may
be substit ut ed directly. When hardware is availabl e, its co ntrol will replace
st ubs in ANALOG , DIGITAL , and READ . The final addition of the BEGIN
..• END structure in TV should occur after all functions are availab l e and
individually tested.

These subst itut es for fully - defined words are a good ex ample of the us e of
stubs, which allow a large program structure to be tested and verifi ed before t he
det ails need to be defin ed. That is espec ially important when you a.re designing

microFORTH PRIMER

Definition of TV in Screens

951

0 (TV CONTROL PADDLE) FORGET TASK : TASK
1 (TESTING STUBS) 952 LOAD
2 (ACTUAL ROUTINES TO BE PUT IN SCREEN 953)
3
4 INPUT BEGIN READ - DUP END
5
6 PROCESS DUP 13 . IF ANALOO
7 ELSE DIGITAL THEN;
8
9 IDLE BEG IN READ NOT END

10
11 TV BEGIN INPUT PROCESS IDLE O END
12
13
14
15

952

0 (TESTING STUBS FOR TV PADDLE 1/0)
1
2 0 CVARIABLE PADDLE
3
4 READ PADDLE C@
5
6
7
8
9

10
11
12
13
14
15

Page 55

micr oFORTH PRIMER Page 56

programs for micropro cess ors. Although the actu al appli ca tion (in thi s case , a TV
tun er) may be well und erst ood, th e deta ils of how th e input/output port s work
may not yet be se ttl ed. The softw are writ er ca n have work underway while th e
hardw ar e des igner fini shes work beca use in micro FO RTH it is eas y to replace a
stub by a whole definition at a later tim e.

A se t of scree ns th at include th e compon ent t estin g definition s of TV is shown
in Figure 5 , You now know enough to understand how thi s program works if you
spend a small amount of tim e studyin g it.

6. 0 ASSEMBLER FEATURES

FO RTH , by design, is a pro gra m ming language th at allow s you, th e program mer,
to conce ntr at e on wha t th e job is , not on how it is to be done on a parti c ular
comput er. This indepe nde nc e from unnecess ary det ail is one of FORTH' s most
power ful fea tu res. Ther e a t•e tim es , however , when you must desce nd into th e
na tiv e language of your micropro cesso r .

In ge neral, you should count on writin g very littl e asse mbly language code under
microFOR TH. There are, however, two kinds of needs that are bes t fulfill ed by
us ing asse mbly cod e. Fi rs t, on many comput ers , when you have des igned a
uniqu e har dwa r e / so f tw are int erf ace , you m ay hav e to wr ite a sho r t cod e
se qu ence to communi ca t e with your devic e . Sec ond , th ere ar e occ asio ns when
spee d is mor e impor ta nt th an th e compa ct pr ogr a ms th a t FORTH na tu ra lly
provid es. In eit her of th ese case s, asse mbly language is a power ful tool.

6. 1 CODE DEFINITION S

Like th e com piler , th e asse mbl er adds definitions to th e diction a ry but with th e
diffe rence th at th e asse mbler uses th e definin g word CODE . The word CODE
se t s th e inn er int erpr et er t o t he ASSEMBLER voca bul ary. A major diff e rence
bet wee n th e compil e r and th e asse mblet' is th at th e asse mbler remains in exec ut e
mo de a nd ne ve r ch anges t o c om pil e mod e. Th ere fo re , p ara m ete r s for
ins tru cti ons are place d on th e st ack durin g th e asse mbly pro cess .

The CODE definition constru ct looks like:

where:

CODE name

CODE

name

(ma chine code)

NEXT JMP
or NEXT

(machine instru ction s) NEXT JMP or NEXT

Ent ers th e ASSEMBLER voca bul ary and add s t he
followin g "nam e" to th e diction ary .

Names (labels) th e CODE definition.

Provid es instru ction s for the microproc essor .

Return s to the inner int erpr et er . (This is a
CODE ending only.)

In its most pr imitiv e fo rm, mic l'OFORTH asse mbly language consis ts of nothin g
mor e than a seq uence of ma chin e inst ru ction s in num eri cal form . Firs t th ese
numb ers are place d on the st ac k . Then two spec ial words (C, and ,) r emove
a numb er fr om th e stac l< and ent er it into th e diction ar y as either a single byt e
(C,) or a byte pair (,) . When th e CODE word is invoke d by name , such
numbers a re exec ut ed as object code for your process or .

microFORTH PRIMER Page 58

Althoug h a t tim es it may be convenient to writ e code at the object code leve l ,
it is not convenient to writ e all code at t his level .

FORTH 's assembler pro vides a se t of macros which r ese mble the manuf act urer 's
instruct ion mn emoni cs. The FORTH word s (m acr os) are exec ut e d at assemb ly
t ime to build the appropr iate machine instru ct ions. When the name of the CODE
definition is invok ed, the mac hine ins truction s (those built by th e asse mbler) are
exec ut e d. It is very impo rtant to r em ember th e difference bet ween exec utin g
the ma cros , whi c h cr ea t e th e ma.chine code, a nd exec uting th e c od e
definition s .

For example, th e instruction to add a register to one CPU's acc umulator is:

CODE ADD LADD NEXT JMP

When ass embled, CODE creates the dictionary entry named ADD which has
one machine ins truction that adds the L regist er to th e accumulator. When
ADD is invoked, th e machin e instr uct ion is executed,

Another exa mple helps clarify the differ ence betwe en asse mbly- tim e and run- tim e
modes of operation.

HERE 2 - TST

While asse mblin g, thi s seq uenc e plac es an address (HERE 2 -) on the stack;
t he macro TST uses that addr ess when it creates th e machine in struction.
Now, when th e word whi c h conta ins t his instruction is invok ed , th e address
compute d at asse mbly time is use d. HERE 2 - is not exec ut ed at run tim e .

6.2 NOTATIONAL CONVENTIONS

Because asse mbly language is so primitiv e , many of t he niceties that FORTH
usually tak es care of for you are unavailable . Fo r exa mple, operations in FORTH
fetc h parameters from th e st ac k and put res ult s there. In asse mbly la nguage,
how ever , you mus t ma nipul a t e t he stac k your self. Furthermore, to write in
asse mbly language you must undet'sta nd not only th e mac hine ins tru ct ion set for
your CP U but also th e unique allocat ion of CPU r egisters assumed by FORTH.

The FORTH asse mbler does follow st andard FORTH con ventio ns suc h as Reverse
Polish Notation. This r equires that parameters (such as accumulator mnemonics,
a ddr esses, e t c.) preced e the in str uct ion mnemoni c . The ord e r in whic h
para met ers for instruction mnemonics ar e entered also follows this conv e nti on so
that the destinat ion addr esses / r eg ist ers pr ece de th e sour ce addr esses /r egist er s.
Exam inin g ass e mbl er sc r ee ns in your microFOR TH syst em will clar ify t his to
you.

In addit ion, there are standard mnemonics for fu ndame ntal FORTH pointer s and
addr essing convention s.

S The address of the top of the para meter stac k .

W Usually th e a ddress of the parameter field of the c urre nt
def inition . (The spec ific position of the pointer is def ined
in your microFORTH Technical Manual Appendix .)

R The addre ss of the top of the return stac k.

microFORTH PRIMER Page 59

Wherever they may be, these names may be used in code to ref er to the areas.
In CODE definitions, parameters are handled exp licitly by using S (th e
parameter stac l< pointer) and the code-e nding returns that push or pop the stack
before exec utin g NEXT .

CODE definitions must end with a jump to th e inner interpreter. They do so
by using a spec ial routine called NEXT , whose primary function is to execute
the next FOR TH word in a colon definition. On so me processors the jump to
NEXT is explicit :

NEXT JMP

On others, a ma cro called NEXT is used to assemble the appropriate code.
Several words are available to modify the stac k before returning to NEXT ;
these are summarized in the microFORTH Technical Manual. Not all of these
are available on a ll processors; co nsu lt the appendix of the mi croF OR TH
Technical Manual for your processor.

There are other not at ional co nvent ions in microFOR TI-I for more advanced
assembler operations. These also may be found in the microFOR TH Technical
Manual,

In assembly code, for instance, there are logical control struct ures such as IF
... ELSE ... THEN and BEGIN ... END which can alter the flow of
exec ution. They are analogous to the FORTH high -level logi ca l s tru ct ur es in
operation. Because the assembler operates in exec ut e mode, how ever, these
words are exec ut ed at assembly time, placing addresses on the stack which the
assembler uses to build jump instru ction s.

This chapter's discussion of the basic assembler package is not int ended as an
in- depth treatise on your assembler. Rather it is int ended to provide you with
the fundamental e le ments so that you may, if you wish, practice writing very
simple routines befor e you tackl e the mor e detailed mat eria l presented in the
microFORTH Technical Manual.

I

I

APPENDIX A. SUMMARY OF FORTH RULES

1. FORTH WORDS ARE MADE UP OF AN ARBITRARY NUMBER OF
CHARACTERS, SEPARATED BY SPACES.

2. MOST WORD S REQUIRE PARAMETERS ON A PUSH - DOWN
STACK.

3 . ANY ERROR MESSAGE EMPTIES BOTH STACKS.

4. ALL PARAMETERS PUT ONTO A STACK MUST BE REMOVED
WHEN THEY ARE NO LONGER NEEDED. THE ORDER WILL
BE LAST IN, FIRST OUT .

5. ALL WORDS MUST BE DEFINED BEFORE THEY CAN BE USED.

6. COMPILING WORDS MUST NEVER BE USED OUTSIDE A
DEFINITION.

7, EVERY IF MUST BE FOLLOWED BY A THEN •

8. ANYTHING PUSHED ONTO THE RETURN STACK MUST BE
REMOVED WITHIN THE SAME DEFINITION.

9. WHEN NESTING STR UCT URES IN FORTH, YOU MUST NEST
EACH STRUCTURE COMPLETELY WITHIN ANY OUTER
STRUCTURE.

10 . NEVER PUT AN UNTESTED ROUTINE INTO A LOOP.

11. A STUB MUST REPRODUCE THE BEHAVIOR OF ITS INTENDED
COUNTERPART WITH RESPECT TO STACK USAGE .

APPENDIX B. micr oFORTH GLOSSARY

This glo ssar y includ es a ll wor ds , definitions, and scree n ass ignm ent s that a1·e
co mmon to all CPUs. Because of the flexibility of the FORTH langu age,
however, you may find a few except ions on your diskette. These will have been
caused by our programmers' mal<ing improv ements to the mi croFORTH syste m
you have rece ived.

Wit hin this glossary there are also a few words whose exact behavior varies from
chip to chip because the impl ementation of eac h is machine dependent. The end
behav ior of t hese words, however, is the sa me on all mac hines; the most obvious
var iat ions of impl e ment at ion occur in M* and M/MOD . They ar e use d by
/ /MOD "'/MOD and MOD . Do not use M and M/MOD unl ess
you under s tand exac tly how t hese word s mo dify t he stack pointer on yo ur
par ticul a r CP U. Use */ /MOD "'/MOD and MOD to perform th e
appropri at e arit hmet ic.

Beca use t hey are CP U- dependent, no ASSEMBLER, CROSS - COMPILER, or
RECONFIGURE word s are given in this glos sa ry . The mi cr oFORTH Technical
Manual give s spec ifics of these three applic at ion vocab ular ies by chip type, while
the Developm ent Sys t em Documentat ion that you rece iv e d with your syste m
cont ains information about any additions or ot her changes.

Shor t glossar ies for th e microFOR TH vo cabul ar ies that pertain only to Opt ions
(suc h as Extended - Precision Math or File Management) ar e provided wit h the
options when th e number of words warrant s it.

The order followed here is th at of t he ASCII character codes.

FORTH, Inc .

WORD

II

#>

#LEFT

#S

' S

(.)

20 Augu st 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 0 2 0

Page 1

Stores the seco nd number on the s t ac k into the address which
i s on the top of the stac k. For exa mpl e, if VALUE is a
VARIABLE , then 32 76 7 VALUE ! changes VALUE to 32767.

EDITOR 14
Used t o e n te r a lin e

terminated by the
Usage: 11 TEXT11 1
This exa mple inserts

FORTH 12

0 0
of text in to PAD; the text i s
de l i mi t er 11

I
TEXT in Lin e 2 of t he curr ent sc reen .

1 1
Conv erts the least s i gnifi ca nt di g it of a 16- bit binary number

to it s ASCII eq uiv a l e nt us in g the current BASE. The ASCII
c harac t e r i s pl aced in the output str in g.

FORTH 12 1 2
Terminates the pi ct ur e d nume ri c output, l ea vin g the byt e c ount

of the st rin g on top of th e s t ac k a nd its address beneath
for TYPE.

EDITOR 21 0 1
Computes th e number of characters r ema inin g in t he s ourc e

text lin e.

FORTH 12 1 1
Con verts any r ema inin g digits of a 16- bit binary numbe r on th e

stac k to their ASCII eq uiv a l e nt s, us in g th e current BASE.
The ASCII c haracte r s a r e placed in t he output st rin g. At
l east one digit will b e co nv e rt ed if the number i s zero .

FORTH 11 0 1
P l aces the address o f the para mete r fie ld of t he next word in

t he c urr e nt inpu t stream onto th e top of the stac k .
Searc hes first t he CONTEXT vo cab ul ary, then t he CURRENT
vo cab ula ry, before g ivin g a n er ror message.

FORTI-I 10 0 l
P l aces t he a dd ress of the top of th e stack on t he stac k,

i.e., t he add r ess of th e top of the s tack before ' S was
inv oked.

FORTH 3 0 0
Beg in s a conme n t, which i s ter min ated by) . Corrment s are

i gnor ed by the syste m a nd ma y appea r in s id e or outs i de a
definition. They may no t, howeve r , c r oss an e ven l i ne
bo und a ry in so urc e text sc r ee ns .

FORTH 12 1 2
Conv e rt s a s i xteen - bit s i g ned number on top of t he stac k to

its ASCII equivalent, l eav in g t he byte co un t of the s trin g
on the top of t he s tac l< a nd i ts address beneat h for TYPE .

Use d by (i .e ., dot).

FORTH, Inc.

WORD

(MARK)

(MATCH)

(MATCH)

(MOVE)

(NUMB ER)

(THEN)

*

* I

*/ MOD

+

+ !

+LOOP

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 9 1 0

Page 2

Compi l es a bac kward jump in a lo g i ca l st ru ct ur e.

FORTH 22 4 2
Usage: s trin g- A co unt str in g - B co unt (MATCH)
Counts mus t be <25 6 . Searc hes for t he 1st occurrence of A in

B. Returns the e nd byte plus 1 of the ma t c hed st rin g in B
a nd a truth va lu e: zero if no matc h and non - ze ro if matc h .

EDITOR 2 2 4 2
In the EDITOR voca bul a ry on COSMACs only. Beha ves like the

FORTH vocabulary (MATCH) .

FORTH 22 3 0
Only ex i sts

COSMACs.
move to

on 6800 s a nd COSMACs; in the EDITOR voca bul a ry on
Same as MOVE excep t there i s an intermediate

HERE .

FORTH 10 1 2
Same as NUMBER exce pt that th e ASCII str in g may beg in with a

minu s s ign . Also, if th e t er minating c har ac t e r i s not a
space, (NUMBER) will ex it with an e rror message. Th e top
of th e stac k is e ith er th e t er min ator or garbage.

FORTH 9 1 0
Compl e t es a forward jump in a lo g i ca l st ru ct ur e.

FORTH 5 2 1
Perfo rms a n unsi gne d multiply of the low - order byt e of the top

number on the s tack with the s i xtee n- bit number beneat h it,
le a vin g a s ixt ee n- bit product.

FORTH 5 3 1
Multipli es the seco nd and third numbe r s on the s tack, then

divides by th e top number, l ea vin g the quoti e nt on top
of the stac k . This is a n un sig ne d operation with a
twenty - three - bit int e rmed i ate result .

FORTH 5 3 2
Multiplies the seco nd and third numbers on the stack, then

divides by the top number , l ea vin g t he quoti e nt on top of
the stack and the r emaind er beneath. This i s an un s i g ned
operation with a twenty - three - bit in te rme di ate result .

FORTH 0 2 1
Rep l aces the t wo numbers on the s tac!< by th e ir s um.

FORTH 0 2 0
Increments the sixteen - bit wol'd whose a ddress i s on the top

t he s t ac k by the amount in th e seco nd word of the s tack.

FORTH O 1 0
Terminates th e rang e of a DO LOOP. In cre me nt s the ind ex

by a n un s i gned sixteen - bit number on top of the s tack,
r emovin g t he number. The l oop i s terminated if the new
ind ex equals or exceeds the limi t (un s i gned compare),

of

FORTH, Inc .

WORD

+LOOP

_ ,

- DUP

- MOVE

- TRAILING

.R

I

/MOD

O<

O=

20 Augu s t 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 9 1 0
De fin e s th e c ompile - time behavior of +LOOP .

FORTH 0 1 0

Page 3

Plac es th e si x t ee n- bit va lu e on top of th e s t ac k into the nex t
di c tion a ry po s ition (a t HERE) a nd a dvanc es H by two .

FORTH O 2 1
Subtr ac t s t h e top s t ac k it em from th e sec ond s t a ck it em,

l ea vin g th e diff e r e nc e on th e s ta ck .

FORTH 0 0 2
Re turn s a non ze ro valu e if th e ne xt word in th e curr ent input

s tr ea m c annot be found in th e di c tionary, and O if it can
be found . If th e word i s found, the s econd it em on the
s ta ck i s t he a ddr ess of th e word' s pa ram e t e r fi e ld.

FORTH 3 1 2
Re produc es th e top of th e s t ac k only i f i t i s non - ze 1• o .

FORTH 22 3 0
Same as MOVE ex c e pt th a t th e c ount mus t be le ss than 256 and

th e block of memory i s move d in r e ver se ord e r, beginnin g at
i t s hi ghe s t a ddr ess . (8080 s and Z80 s on 1 y.)

FORTH 13 2 2
Re du ces th e byt e c ount on th e top of th e s t a ck by the numbe r

o f tr a ilin g bl a nk s found in th e s tring whose addr ess i s the
se cond i te m on th e s tack.

FORTH 12 1 0
Output s a s i gned s i x t ee n- b i t numbe r fr om th e top o f th e s tack.

FORTH 13 2 0
Ou t put s th e sec ond numbe r on th e s t ac k, ri ght - adju s t e d i n a

fi e ld whose wi d th i s s pec ifi e d on th e top of th e s tack.

FORTH 5 2 1
Uns i gne d d ivi s ion of th e sec ond word (full s ixt ee n bit s) of

th e s t ac k by th e t op (max valu e 128), l e avin g th e quotient
on th e top of th e s ta c k.

FORTH 5 2 2
Pe rforms an un s i g ne d divi s ion of th e sec ond st ac k it em by t he

fir s t , l eavin g a quoti e nt on th e top of th e s ta ck a nd a
1· ema i n de r b e n ea t h .

FORTH O 1 1
If th e top s t ac k it em i s l ess th e n ze ro, r epl a c es it with

on e ; l ea ves ze ro o th e rwi se.

FORTH 0
I f th e top stac k i te m equ a l s

l ea ves ze r o oth e rwi se.

1 l
ze ro , r epl a ce s it with on e ;

FORTH, Inc .

WORD

1+

!LINE

2*

2+

8 *

;CODE

;CODE

; s

<

< #

< BUILDS

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 0 1 1
Adds on e to th e top s t ac k it em.

EDITOR 21 0 1

Page 4

Given a str in g in PAD, searc hes for t he str in g in the c urr e nt
lin e. Lea ves zer o if th e str in g i s not found and one if it
is. Leaves the cursor position e d at t he end of the matc he d
string or at the end o f lin e if not found.

FORTH 0 1 1
Doubles th e va lu e of the top i te m on t he stac k .

FORTH 0 1 1
Adds two to the top stac k it em.

FORTH 3 1 1
Mult i plies t he top va lu e on the stac k by e i g h t .

FORTH O O 0
Creates a dictionary entry for t he word following

t he int e rpr ete r into compile mode.

0 0 0

. . .

FORTH
Ter min ates a

STATE .
def inition . Togg l es t he user var i ab l e

FORTH 4 0 0

Put s

Ends t he creation portion of a new de finin g word and beg ins
the code portion (run - time be havior) of it.

FORTH 0 0 0
Whe n exec ut e d , sets the code ad dr ess o f the new wod to point

to the co de that follow s ;CODE .

FORTH O O 0
Ends th e loadin g o f a ny scree n in which ;S i s exec ut e d.
Within a definition causes a n ex i t to the next outer

def inition.

FORTH O 2 1
If the seco nd stack it ~n is l ess th a n t he top, replaces the

top t wo i te ms on the stac k with on e , zero otherwise .
Th is i s a limit e d s i g·ned compare. Equiv a l ent to O <.

FORTH 12 0 0
Beg in s pictured nume ri c output. Sets HLD to PAD.

sixteen - bit binary numbe r must be on the stac k.

FORTH 3 0 0
Begins t h e comp il e - tim e be ha vior of a new "h igh - l evel "

defining word. Defined as O CONSTANT; use d with DOES>.

FORTH, Inc.

WORD

<R

=

>

?

?STACK

@

A

ABS

AND

ASSEMBLE

ASS™BLER

A'I'

B

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH O 1 0

Page 5

Removes the top it em on the parameter stack and places it on
the top of the return stack.

FORTH O 2 1
If the top two stack it ems are eq ual, replaces them with one;

l eaves zero otherwise.

FORTH 5 2 1
If t he second it em on the stac k is greater that the top item,

rep 1 aces both w i th one ; 1 ea ve s zero other w i s e . Th i s i s
a limit ed s ign ed co mpar e. Equival e nt to SWAP o<.

FORTH 12 1 0
Outputs the contents of the word address which is on the top

of the stack. Equival e nt to @. (dot).

PORTH 10 0 0
Checks for stack underflow and overflow and i ss ues an error

message if appropriate.

FORTH O 1 1
Replaces the address on the top of the stack by the contents

of the two - byte word at that location.

EDITOR 14 1 0
In th e c ur rent screen, adds th e lin e of t ext that follows A

AFTER the lin e number g iv e n. Line 15 i s lo st . The added
lin e r emain s in PAD.

FORTH 5 1 1
Replaces the top stee l< i tern with i ts absolute valu e.

FORTH 0 2 1
Performs the lo g ical s i xtee n- bit AND operation on th e top

two stac k i t ems.

FORTH 9 0 1
For COSMACs only, a constant which gives the load sc r ee n of

the ASSEMBLER vo cab ulary.

FORTH 0 0 0
Sets CONTEXT to the ASSB~BLER vocabulary.

EDITOR 21 1 1
Calculates the physi ca l address in memory of the current

cursor position within th e current screen.

EDITOR 21 0 0
Positions the cursor in front of th e str in g ju st found. Used

in conjunction with F .

FORTH, Inc.

WORD

BACKUP

BASE

BEGIN

BLANK

BLK

BLOCK

BUFFER

C

C !

C#

C,

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

DISKING 24 0 0

Page 6

Copies an entire diskette from Drive Oto Drive 1.

FORTH O O 1
A us er variabl e that contains the radix for number co nv ersio ns

on input or output. It i s one byte long and is used with
C@ a nd C!

FORTH 9 0 1
Marks the beginning of an indefinite lo op which i s terminated

by END. Leaves its address on the stack.

FORTH 22 2 0
Given a n address in the second stack position and the byte

count (<256) on top, stores blanks into that region of
memory. Also in the EDITOR vocabulary.

FORTH O O 1
A user variable that contains the numb er of the block

being int e rpr eted during a LOAD • If BLK contains zero,
input i s from the terminal. Overlaps the user vari ab l e
IN.

FORTH 3 1 1
Replaces the block numbe r on th e top of the stac k by the

starting address of it s block buff er in memory, adding in
OFFSET.

FORTH O O 1
Returns the address of the block ID of a free block buffer.
The ID r es id es two bytes before the b egin ning of the block

buffer.

EDITOR 21 0 0
Inserts the string that follows C into the

beg innin g at the current cursor position.
(at th e e nd of the line) will be lo st.

FORTH 0 2 0
Stores the e ight - bit valu e i n the low - order

i tern on th e stack into th e address on the

EDITOR 21 0 1

cu rr ent line,
Extra chara cters

byte of the second
top of the stack.

Calculates the character po s ition of the cursor in the
current 1 i ne.

FORTH 0 1 0
Places the l ow- order byte of the top of th e stack into t h e

next dictionary position at HERE and advances H by one.

FORTH O 1 1
Replaces the address on the top of the stack with its con ­

tents. The high - order byte i s ze ro filled.

FORTH, In c.

WORD

CODE

COMPIL E

CONSTANT

CONTEXT

COPY

COUNT

CR

CREATE

CROSS

CURRENT

CVARIABLE

CZ

20 Augu st 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: I N OUT

FORTH 4 0 0

Pa ge 7

Be g in s a dictionary e ntry for th e word followin g it a nd e nter s
the ASSENIBLER voc abul a ry .

FORTH O O 0
Chan ges th e user va ri abl e STATE use d by and ;
(Chan ges th e name fi e l d in th e di c tion a ry e nt r y .

c han ge d i s mac hin e - depe ndent.)
Th e byt e

FORTH O 1 0
A de finin g word which c r ea t es a di c ti onary entry for a

s i x t ee n- bit valu e. Whe n th e name i s invok e d, th e va lu e i s
pl ace d on th e t op of th e s t ac k .

FORTH O O 1
A use r va ri a bl e whose c ont e nt s point to th e voc abul a ry in

whi c h sea rch e s b eg in .

EDITOR 14 2 0
Copi es on e s cr ee n to anoth e r . The so ur ce s cr ee n i s

u n c h a n g e d . Us a ge : s o u r c e - s c r e e n de s t i n a t i o n - s c r e en CO PY

FORTH 15 1 2
Tak es th e addr ess of a cha rac t er s trin g whose f ir st by te i s a

c ha ract e r c ount a nd r epl a c es it with a c haract e r count on
top of the s tack and th e a ddr e s s of th e fir s t chara c t e r
be nea th. In Scr ee n 16 on OOSMACs .

FORTH 1 2 0 0
Send s a c arri ag e r et urn and lin e fe ed to th e t e rmi na 1 •

FORTH 0 0 0
Whe n exe cut e d, c r ea t es a di c tion a ry hea de r for t he word that

f ollow s it. Use d in th e de finition of a 11 de finin g word s.

FORTH 19 0 1
A CONSTANT that pl ace s th e load scr ee n numbe r of th e c ro ss ­

c ompil e r on th e top of th e sta ck.

FORTH O O 1
A us er variabl e who s e cont e nt s point to th e vocabulary in

whi c h new de finition s a r e add e d. The CURRENT vocabulary
i s se ar c he d whe n th e se ar c h o f th e CONTEXT vocabul a ry
e nd s .

FORTH 4 1 0
A de finin g word which c r eat e s a dictionary entry for a n

e ight - bit va lu e . When th e CVARIABLE name i s invok e d, th e
a ddr ess of th e valu e i s pl ace d on th e top of th e s t a ck.

FORTH 0 0 1
P l aces one byte of ze r o on t he s ta ck .

point e r by on e byt e.
In c r eme nt s th e s ta ck

FORTH, In c.

WORD

D

DECIMAL

20 Augus t 1 97 8
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

EDITOR 14 1 0

Page 8

In th e curr ent sc r ee n, de l etes th e lin e s pec ifi e d on t he top
of th e s tack and pl aces it in PAD. Suc cee din g lin e s a r e
move d up; Lin e 15 i s dupli c at ed.

FORTH
Se t s BASE

5 0 0
to r a di x te n f or numbe r con ve r s ion .

DEFINITION S FORTH 11 0 0

DELETE

DEVICE

DI SKING

DO

DO

DOES>

DOWN

DRO

DRl

DROP

Se t s CURRENT to CONTEXT. Use d t o spec i fy t he voc abul a r y in
whi c h def ini t ion s will be en tered .

EDITOR 14 1 0
Stor es ze ro into th e fir s t two byt es of th e spec i f i e d sc r ee n

to mark th e s cr ee n as unu se d . Thi s sc r ee n th en will not be
li s t e d by INDEX , SHOW , or TRI AD in th e PRINTING
utility .

PRINTER 17 0 0
Ma rks th e 1 o ad poi n t fo r th e PRINTER voc abul ary . (Not av a i 1-

a bl e on COSMACs .)

FORTH 19 0 1
A CONSTANT t ha t g iv es th e lo a d sc r ee n number o f th e DI SKING

utility .

FORTH 9 0 0
De fin es th e compil e - tim e be havior o f DO .

FORTH O 2 0
Beg ins a f init e loop whose ind ex (th e top s tac k it em) a nd

limit (th e sec ond s t a ck it em) a r e moved to th e r e turn s ta c k
whe n it i s inv oke d.

FORTH O O 0
A de finin g word whi c h mark s th e beg innin g of th e run - tim e

portion of a new de finin g word . Use d with <BUILDS .

DI SKING 2 4 2 0
See RIGHT.

FORTH 19 0 0
Se t s th e us e r variabl e OFFSET to z e ro for ab so lut e access

by BLOCK and LI ST.

FORTH 19 0 0
Set s the use r va riabl e OFFSET to 2000 for r e lativ e ac cess to

Drive 1 by BLOCK a nd LIST .

FORTH 0 1 0
Remove s th e top it em f rom th e sta c k.

FORTH, I n c .

WORD

DUMP

DUP

ECHO

ECHO

EDIT

EDITOR

ELSE

ELSE

END

END

ERASE

ERASE- CORE

ERR

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 13 2 0

Page 9

Ou tp uts t he val ues co n ta i ned in a spec i fied region of memory.
Usage: start - add r co unt DUMP

FORTH O 1 2
Dup li cates t he top of t he stack.

FORTH 15 1 0
Sends th e character i n t he l ow- order byte of t he top stack

i tem to the term i nal.

PRINTER 1 '7 1 0
Se nds t he character i n t he l ow- o r der byte of t he top stack

item to t he printer device. (Not availab l e on COSMACs.)

FORTH 19 0 1
A constant that is t he l oad screen number of the EDITOR

vocabulary. For COSMACs only .

FORTH 14 0 0
Sets CONTEXT to t he EDITOR vocab u 1 a r y. It i s IIVIMEDIATE

so t hat it muy be i nvo ked i ns i de a def i nit i on.

FORTI-I 0 1 1
Used wi t hi n t he IF . . • THEN structu r e, ELSE

" false " part. The wor ds t hat fo ll ow ELSE
if t he top stack i tem was zero (fulse) whe n
in voked.

FORTH 9 0 0
Def i nes t he cornpi l e - t ime be hav i or of ELSE .

FORTH 0 1 0

beg i ns the
are executed

IF was

Term i nates an i ndef i n i te l oop started with BEGIN. Ret urns
to t he start of t he l oop i f t he top stac k i tem i s zero
(fa l se) ; termi nates the l oop i f t he top stack item i s
no n- zero (true) . (Not ava i lab l e on 68 00 s.)

FORTH 9 0 0
Def in es t he compi l e - t ime beha vi or of END •

FORTH 4 2 0
Gi ven t he byte count on top of t he stack and t he address

be neat h , stores zeros in a reg i on of memory.
Usage: sta r t - adr. cou nt ERASE

FORTH 3 0 0
Stores zeros in a l l t he block buffers. Does not wr i te to dis k

any b l ock bu ff e rs mar ked for writ in g.

EDITOR 2 1 1 0
Us es t he error condition code on top of the stack; if true,

move s text from PAD to HERE and i nvo l<es O QUESTION .

FORTH, Inc .

WORD

ERROR

EXECUTE

EXPECT

F

FILL

FIND

FLUSH

FMT

FORGET

FORTH

GAP

H

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

DISKING 26 0 1

Page 10

Leaves the value of STATUS masked for error bits.

FORTH 0 1 0
Executes the word who se parameter field address i s on top

of the stacl<.

FORTH 16 2 0
Input s, from the terminal, the number of c haracters spec ifi ed

on top of the stack and places them into memory at the
address given beneath, followed by 2 nulls. The stri ng is
ended when the co unt is ex haus t ed or by a carriage return.

EDITOR 21 0 0
current Beginning at the c urr ent cursor position in the

sc r ee n , searc h es for the string that follows
the cur sor positioned irnnediutely after that

Multiple lines are searched .

F and leaves
string .

DISKING 24 0 0
Sets a non - zero value into the block IDs of the disk block

buffers. Used to force the operating system to read d i s I<
Block 0 from disk.

EDITOR 21 0 0
Searc hes eac h line of the c urr ent screen, beginning at the

c urrent c ursor position for the stri ng in PAD. Pr int s
an e rror message if the string i s not found.

FORTH 3 0 0
Forces a ll updat ed block s to be written to disk.

DISKING 24 0 0
Formats the disk on Drive 1 (where approp ri ate).

FORTH 11 0 0
Physically forgets, at exec ut e time, a ll dictionary entr i es

after and including th e word specified in the current
input stream.

FORTH 11 0 0
The nam e of the inn er most vocabul ary. Sets CONTEXT to

FORTH. It i s IMMEDIATE so that it may be invok ed
insid e a definition.

EDITOR 14 1 1
In the current screen, pushes a ll lin es that occur AFTER

the specified line down one.

FORTH O O 1
A user variabl e that co ntain s the address of the top of the

di ct i ona t·y. See HERE .

FORTH, Inc.

WORD

HERE

HEX

HLD

HOLD

HOLD

I

I

IF

I F

IMMEDIATE

IN

IN- LINE

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH O O 1

Page ll

Places on t he stack the address of the next available
byte at the top of the dictionary. See H.

FORTH
Sets BASE

5 0 0
to rad i x s i xteen for number conversion .

FORTI-I 1 2 0 1
A variable that po int s at the most recent c harac ter of the

output string during pictured numeric output .

EDITOR 14 1 0
Transfers th e lin e whose number is on the top of the

stac l< to PAD.

FORTI-I 12 1 0
Dec rements HLD a nd plac e s an ASCII c haracter t hat i s on top

of t he stack into the output str ing during pictured nume ric
output. See < #, # and #> .

EDITOR 14 1 0
In the c urr ent screen, inserts the lin e that i s stored in

PAD into the line that follows the one whose number i s
on top of the stac k . Succeeding l in es a r e pushed down;
Line 15 is lo st.

FORTH 0 0 1
Copies the top of the return stack onto the parameter stack;

it does not alter t he return stack.

FORTH 0 1 0
Beg in s a co nditional s tructure. Exec ut es the words that im­

mediately follow IF when the top of th e stack i s true
(non - zero) ; otherwise s kip s to ELSE (if present) or THEN
(if there is no ELSE) or WHILE (in stead of THEN).

FORTH 9 0 1
Def i n es the comp i l e - t i me be ha v i o r of I F .

FORTH 3 0 0
Marks the word most recently defined as a crnnpil in g word .
The word i s executed whe n e ncou nt ered in side of a

definition.

FORTH O O 1
A user variabl e that points to the relative location in the

input st r eam . IN overlaps the user variabl e BLK .

PORTH 11 l 0
Given o numbe r on the top of the stack, comp il es it as a

sixteen - bit literal.

FORTH, Inc.

WORD

IN- LINE

INC

INDEX

INTERPRET

J

KEY

L

L#

LEAVE

LEFT

LF

LIN E

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 0 0 1

Page 12

Puts a sixtee n- bit literal on th e stac k at run time.

DISKING 24 0 1
A constant that g iv es the blo ck in cre ment for RIGHT a nd

SWEEP. Must be an odd number.

PRINTING 27 2 0
Types the first lin e of eac h screen in the range g iv en, sixty

lin es to a page. The copyr i ght and he ad in g are at th e
base of eac h page.

Usage: star t - screen# end - scree n# INDEX .

FORTH 0 0 0
Outer int erpre t er loop; sca ns a nd searches for a word (to be

compiled or exec ut ed, depending on STATE and precedence)
in the dictionary . If not found, co nv ert s number and com­
il es lit era l form if in comp il e mode.

FORTH 4 0 1
Puts the ind ex of the outer of two nested DO .. . LOOPS on

the stac k . Only the indic es of the two inn er most nest e d
loops are ava il a bl e . In Scree n 5 on COSMACs,

FORTH 16 0 1
Receives and places on the stac k a s in g l e c haracter fro m the

keyboard. In Scree n 15 on COSMACs.

FORTH 13 0 0
Li sts the screen s pec ifi ed in the user vari ab l e SCR.

EDITOR 21 0 1
Ca lculat es the lin e number of the cursor in the current

sc r ee n . Impl ement at ion i s mac hin e - dependent.

FORTH 4
Sets the 1 imi t of a DO

will b e terminated,
In Screen 5 on COSMACs.

DISKING 24
See RIGHT.

PRINTING 27
Se nds one lin e f ee d .

0 0
LOOP equ a l to ze ro so that a loop

Impl ement at ion i s machin e - dependent.

2 0

0 0

EDITOR 14 1 2
Given the numbe r of a lin e in the current screen on the top of

th e s t ac k, r e turns a character count of s i xt y- fo ur (on top)
a nd the address of the lin e beneath . The lin e number i s
masked by fifteen.

FORTH, Inc.

WORD

LINE

LIST

LOAD

LOG

LOOP

LOOP

M

M,:,

M/MOD

MATCH

MAX

MESSAGE

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 13 2 2

Page 13

Given a lin e number beneath and a scree n number on top of the
stack, calculates the block address with a co unt of 64 on
the top of the stack. Can be us ed by TYPE or MOVE .

FORTH 13 1 0
Li st s the screen whose number is found on the top of the

s ta c k and places the sc re en nwnber in SCR.

FORTH 3 1 0
Begins int erpretat ion of so ur ce text in the screen whose

nwnber i s on the top of the stack.

DISKING 26 1 0
Logs a di sk error by typing the block number that i s on top of

the stack, followed by th e disk error message and the error
stat us.

FORTH O O 0
Terminates the range of a DO LOOP. I ncremen t s the ind ex

by one a nd exits i f the index eq ual s or exceeds the limit .

FORTH 9 1 0
Defines the c ompile - ti me behavior of WOP.

EDITOR 21 1 0
Giv en a count, moves the c ur sor forward (positive) or backward

(n egative). The line that contains the c ur so r is s e nt to
the term in al.

FORTH 5 2 2
Multiplies t he top two values on the stack, l eav in g

a twenty - four - bit product. The output format i s chip ­
dependent . See M/MOD .

FORTH 5 3 2
Divide s a twe nty - fo ur - bit number by

l ea vin g th e remainder on top and
The input format is chip - dependent.

DISKING 25 2 0

the top stack it em,
the dividend beneath.

See also M* .

Usage: st a rt - s c r e en# end - screen# - plus - 1 MATCII
Compares betwe e n DRO and DRl; do e s not match screens if both

begin with 0 . On t he first mismatch, types sc r e e n# a nd
approx imat e li ne# (relative block * 2) of the mi smatc h .

FORTH 5 2 1
A limit e d s i gned compa1·e between the top two value s on the

stack that l eav es t ile largest value on the s tack .

FORTH 10 1 0
Ty pes on th e t e rminal a s pec ifi e d li ne r e l a tiv e to t h e s tart

o f Se r. 23 . Omit s tr a ilin g blan ks . Uses Ser. 23 as th e
lo g i c al ba se , i .e., Messa ge 16 i s Line O of Sc i·. 2 4 ,
Me s s Elg c 3 2 i s L i n e O o f Sc l' • 2 5 , e t c .

FORTH, Inc .

WORD

MESSAGE

MIN

MINUS

MOD

MOVE

MSG

MSG

N

NB

NEW

NOT

NOTIFY

NUMBER

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACI(: IN OUT

PRINTER 17 1 0

Page 14

Same as MESSA.GE
COSMACs.

in the FORTH vocabulary. (Not ava il ab l e on

FORTH 5 2 1
A limited s i g ned compare betw ee n the top two values on the

stac k that l eaves the smal l er value on the stack .

FORTH 0 1 1
Replaces the top of the stack by its two's compleme n t .

FORTH 5 2 1
Divides the top stack it em into the valu e beneat h it, leaving

the r emainder on the top of the stack.

FORTH O 3 0
Moves a specified region of memory to a noth er r eg ion of

memory; moves th e locations with low er addresses first .
The source area rema in s unchan ge d .
Usag e: so urc e - addr. dest. - addr. byte - count MOVE

15 0 0 FORTH
Defines a

in the
count.

word that will type out the s trin g that follows it
dictionary. The s tring i s preceded by u c haracter

In Screen 16 on COSMACs.

PRINTER 17 0 0
Sets ASCII c hara cter codes into a named definition in the

dictionary. (Not available on COSMACs.)

EDITOR 21 0 0
Finds the next occurrence of a st rin g (found with an F)

in the current sc r ee n.

DISKING 24 0 1
A constant that gi ves the number of blo c l< buff e r s.

DISKING 24 0 1
A constant that g ives the first block number on Drive 1.

J.i'ORTH 5 1 1
Reverses the truth valu e of the top of the stac k .

Identical to O= .
D I SK I NG 2 6 1 1

Erases the block ID in the buff er whose ad dr ess i s on top of
th e s t ac k after first fetching the block number contained
i n the ID. Inv o l< es LOG w i th the b 1 o ck number u n d returns
the number l ess the contents of OFFSET to the stack.

FORTH O 1 2
Given the starting address less 1 of a numeric ASCII string on

the stack, con verts th e stri ng to binary accordi ng to the
curr e nt value of BASE and leaves it in the s e cond stack
entr y. The top it em points to the non - numeric terminator.

FORTH, In c.

WORD

OCTAL

OFFSET

OK

OVER

p

PAD

PRINTER

PRINTER

PRINTING

QUESTION

QUIT

R

R

20 Aug us t 1978
MICROFORTH GWSSARY

Page 15

VOCABULARY SCREEN STACK: IN OUT

FORTH 5 0 0
Sets BASE to radi x e i g·h t for numbe r co nv ers ion.

FORTH 3 0 1
A use r variabl e whose conte nt s are added to blocl< numb e rs in

BWCK t o dete1 ·mi ne th e p hys i ca l bloc l< number.

FORTH 15 0 0
Types the charac t e r s O, K, carr i age return, a nd lin e feed. In

Scr ee n 16 on COSMACs.

FOR'fll 0 2 3
Copi es the seco nd item on t he slack on t o the top.

EDITOR 14 1 0
Plnces th e l in e of t ext t hat follow s

lin e. Th e previous co n tent of t he
11 p u t 11 1 i n e r eiria i n s i n PAD .

P i nto the spec ifi ed
1 i n e i s 1 o s t . Th e

FORTH 12 0 1
Th e start in g address of a holdin g bu ffer, PAD resi des

s i xty - f iv e byt es above HERE a nd mov es as def ini t ion s are
adde d to a nd del eted from the dictionary.

FORTH 19 0 1
A co nsta nt that places t he l oad sc reen numbe r of t he PRINTER

utili ty on t he stac k . (Not a va il ab l e on COSMACs.)

PRINTER 17 0 0
Same ns CR. (Not ava il abl e on COSMACs.)

FORTH 19 0 1
A consta n t t hat pl aces th e l oad screen number of th e PRINT ING

ut ili ty on t he stac l<.

FORTH 10 1 0
Re peats the l ast word exec ut ed by t he text int erprete r (fo u nd

at HERE) a nd i ss ues a n e rror message as spec i f i e d by
MESSAGE, t he n empt i es bot h stac ks a nd r et urns con trol to
t h e ope r a t o r . No OK i s i s s u e d .

PORTH 16 0 0
Thnpt i es t he r et urn stac k a nd ret urn s co n trol to th e

operator. No OK i s is s ued.

EDITOR 14 1 0
Rep l aces t he 1 i ne spec ifi ed on th e top of t he stack

co nt e nt s of PAD .

FORTII 1 0 1

with th e

A consta n t th a t g iv es the add re ss of t he return sta c k po in ter.
For COSMACs, in l h e AHSEMBLlli1 vo cab ul a ry.

FORTH, In c .

WORD

R!

R#

R>

REMOVE

RIGHT

ROT

S!

so

SCR

SHOW

SIGN

SPACE

20 Augus t 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTI-I 16 1 0

Pa ge 16

Moves th e c ont ent s o f Reg i s t e r U t o Reg i s t e r R (i .e. , r ese t s
th e r e turn s t ac l<) . On COSMACs only .

FORTH 13 0 1
Use r va ri abl e which co nt a in s th e c har ac t e r po s i t i on o f th e

cur s or in t he EDITOR. Whe n f il e ma nage me nt i s in t he
s y s t em R# i s th e r eco rd numbe r of th e c ur r ently a c ces s e d
r ec ord .

FORTH 0 0 1
Removes th e t op of th e r et u r n s t ack an d p l aces i t on t he

param e t e r s t ac k.

EDITOR 21 1 0
Giv e n th e c ha r ac t e r po s i t i on o f th e b eg innin g o f th e s trin g

to be de l e t e d, de l e t es tho se char ac te r s on t he lin e (up t o
th e curr e nt cursor po s ition) a nd move s a ll c harac t e r s up.

Trailin g bl a nk s a r e a dd e d a t th e e nd as nee de d .

DI SKING 24 2 0
Copie s th e r a nge of sc r ee n g iv e n from Driv e O to Driv e 1 .
Usa g e: s t a rt - sc r ee n# end - s cr ee n# - p lu s - 1 RIGHT
May b e call e d UP, DOWN, or LEFT .

FORTH O 3 3
Rotat e s t he top thr ee s t a ck it ems , puttin g t he t hi rd s t ac k

it em on th e top. On 6800s ROT r es id es in Scree n 5 .

FORTH 10 1 0
Se t s th e a ddr e s s of th e c urr e n t s tack point er t o th e one g iv e n

on th e s tacl<.

FORTH O O 1
A us e r VARIABLE th a t c ontain s th e add ress o f th e bot to m of

th e pa r ame t e r s t a ck a nd t he s t a rt o f th e inpu t message
buffer .

FORTH 13 0 1
A us er variabl e that holds th e c ul'r e nt EDITOR sc r ee n numbe r .

PRINTING 27 2 0
Typ es TR I AD s of s c r e e ns i n th e i n c 1 us i v e r a nge g i v e n .
Us age: s tart - s c r e en e nd - sc r ee n SHOW

FORTH 12 2 1
Plac es n minu s s i gn in th e pi c tur e d nume ri c output s trin g if

th e s ec ond word on th e s tack i s neg ativ e . De l e t es thi s
se cond word on th e s tack but r eta in s th e top word .

FORTH 12 0 0
Se nd s a s in g l e s pace (bl a nk) t o th e t e rminal.

FORTH, Inc .

WORD

SPACES

STATE

STATUS

STRING

SWAP

SWEEP

T

TASK

TEXT

THEN

THEN

TILL

TOP

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 12 1 0

Page 17

Sends th e number of s paces that i s des ignated by the top
stack it em. May send zero spaces.

FORTH O O 1
A user vari able, one byte wide, that indic ates whether the

int erpreter i s in compile or exe cute mode .

DISKING 26 0 1
Returns on t he s tack the disk s tatu s as of the la s t operator.

EDITOR 21 0 0
Scans ch a 1· a c t c r s i n t h e i n p u t s t r e am u n t i 1 t he de 1 i m i t i n g

c haract er (th e low - order byt e on top of the stack or a car ­
riage r et urn) i s encountered. Reads character s from the
t e rmin al into PAD with a l ea d i ng count.

FORTH 0 2 2
Exchanges the top two stack it ems.

DISKING 24 2 0
Reads eac h screen in th e range g iv en to check for disk errors.
Usage: start - sc r ee n# end - screen# - plus - 1 $\IEEP

EDITOR 14 1 l
Types the line spec ifi e d (on the top of the stac k) of t he

c urr e nt scree n and transfers it to PAD. The line number
is l e ft on the stack.

FORTH 3 0 0
Marks t he beginning of the application vo ca bulary.

FORTH 13 1 0
Scans c haract e rs in the input s tream until delim i t er (low ­

or der byt e a s top stack item or carriage return) i s encoun ­
te r ed. Lead in g occurrences of th e delimiter are s kipp e d
over. Inpu t is placed in PAD and i s blan l< filled.

FORTH O O 0
Marks the end of an IF . . . THEN structure.

FORTH 9 0 0
Define s the compile - time behaviot' of THEN •

EDITOR 21 0 0
Beg inni ng at t he current c ur s or po s ition on the current lin e ,

de l e tes a ll c haracters up to and includin g the s tring
t hut f o 11 ows T I LI,

FDITOR 14 0 0
Posit i ons the c ur so r at th e be g innin g of the cur r e nt sc r ee n .

FORTH, Inc.

WORD

TRIAD

TYPE

TYPE

u

u ,:,

U/

UP

UPDATE

USER

VARIABLE

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

PRINTING 27 1 0

Page 18

Types a set of three s creen s , g iv e n on e scr e en numbe r . The
sc reen number may be any of th e thr ee sc r e en s on a pa ge ;
the top s cre en i s a lwa ys the s cr ee n numbe r modulo
thr ee . Copyri ght and he adin g app ear at page bottom.

FORTH 1 5 2 0
Uses a chara c t e r c ount on top of th e sta c k a nd a n addr ess

b e ne ath to se nd c har ac t ers to th e t er min a l. Ma y 'IYPE
zero chara c t ers . In Sc r ee n 16 on COSMACs.

PRINTER 17 2 0
Use s a cha r ac t e r c ount on t op of th e s t a ck a nd a n addr ess

ben eath to se nd char a ct ers to th e print e r de vi ce .
(Not a vail abl e on COSMACs.)

FORTH 4 0 1
A constant that g iv es th e addr ess of th e point e r to th e s tart

of th e use r ar e a. For COSMACs , in ASSEMBLER vo c abulary.

FORTH 0 2 1
Uns ign e d multiply of th e low - order byt es of th e to p two words

on th e stack, le a ving a s i x t e en - bit product .

FORTH 0 2 2
Unsign e d divid e of th e s e cond word on th e s t ac k by th e top

word, leavin g a quoti e nt on top and a r emaind e r be neath .

DISKING 24 2 0
Se e RIGHT.

FORTH O O 0
Ma rk s th e la s t buff e r r e turn e d by BLOCK f or wri t in g. Th e

block i s r ewritt e n on th e di s k e ith e r by th e nex t FLUSH
or automati c ally when th e buff e r i s ne ede d f or a noth e r
block.

FORTH O 1 0
A definin g word, use d to name lo cations at fi xe d r e lativ e

addresses within th e use r a r e a.

FORTH
A definin g word

si x t ee n - bit
th e addr ess
stack.

4 1 0
that cr e at es a dictionary e ntry for a

valu e . When th e VARIABLE name i s invok e d,
of th e valu e i s plac e d on top of th e

VOCABULARY FORTH 11 0 0
De fin es a word whose p a rrune t e r field plu s t wo point s t o t he

most r ece nt entry of t ha t vo c abulary' s se t of def init i on s.
Exec uting a voc abul a ry name points CONTEXT t o tha t voca bu ­

l a ry' s par ame t e r f i e ld plu s two.

FORTH, In c.

WORD

WHILE

WHILE

WORD

X

[

[

[•]

[BLOCK]

[SWAP]

eot

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 0 0 0

Page 19

Ter min a t es a n in def init e l oop of t he follow in g for m:
BEGIN (co nd ition) IF WHI LE or BEGIN (co ndit i on) IF ELSE WHILE
All ows a test at t he beg i nn in g o f a n in def ini te loop.
(Not avai l able on 68 00s.)

FORTH 9 2 0
Def in es t he comp il e - t ime be hav i or of WHI LE .

FORTH O 1 0
Reads for ward i n t he c urre nt in pu t stream un t i 1 th e de li mi ter

g iv en on t he stac k . The by t e co unt and text are stored at
HERE wi t h t he byte co unt in t he f i rst byte.

EDITOR 21 0 0
Beg innin g a t th e c ur r en t cu rs or pos i t i on, searc hes for a nd

de l etes t he str in g t hat f o ll ows X. Mul t i p l e lin es a r e
searc hed.

FORTH 13 0 0
Def in es t he r un - tim e behav i or of [, whi c h types ou t text on

t he CRT. The str in g res i des in th e di ctio na r y, preceded by
a co un t. I t was l a i d down at compi l e t ime by use of t he
comp il i ng word [.

FORTH 13 0 0
A c rnnp ilin g word whi c h ca uses th e str in g of c ha r acters until

t he del imi ter J, fo llo win g i t to be typed whe n t he def in ed
word i s inv oke d .

FORTH 0 0 1
Du r i ng compil at i on, pus hes on to t he stack t he s i xteen - b i t

va l ue t hat fo ll ows it .

FORTH 11 0 0
Def in es t he compi l e -t ime be ha vi or of [1

] •

D I SK I NG 2 6 1 1
I n v o k e s BLOCK a nd , i n ca s e o f r e ad e r r o r s , r e t r i e s up t o t e n

t i mes . I nvokes LOG for a 11 b ut t he 1 as t r etry .

FORTH 11 1 1
A comp il ing word whi c h s waps t he top two word s of the stac k

duri ng comp il at i on .

FORTH O O 0
A compi lin g wor d t hat p l ac es t he address of t he word that

fo ll ows i t into e new def ini tio n . Use d to he l p defi ne t he
r u n - t i me and comp i 1 e - t i me be ha v i o r o f a comp i l e r wot' d .

FOH:rn 0 0 0
An ASCII null chara cte r thnt term i nat es sca nnin g in the

c ur rent i n put s t t' e am. Nu 1 l co nt rol s the seq u enc i n g of
t he block buffers of u sc r e e n.

