The contents of this document are the intellectual property of FORTH, Inc. and are protected by copyright. This document is provided free of
charge for personal, non-commercial, and academic uses. You may not redistribute this in any form without permission from FORTH, Inc.

Copyright 1976, 1978 by VORTII, Ine,

Second edition
98Y6543721

This book was produced by usc of the textWORTH System.

FORTH and microFORTII arc irademarks of FORTII, Ine.

All rights reserved, No part of this book may be reproduced in any form or by
any means, electronic or mechaniceal, including photocopying, recording, or by an
information retricval system, without perinission in writing from:

FORTI, Inc.
815 Manhattan Avenue

Manhattan Beach, CA 90260

TABLY. OF CONTENTS

FIGURES AND TABLES ¢ ¢ v v v v v v v s v v e w v
PREFACE . . . v v v o v 0 e o e o e v e e e e e e e e e 1

1.0 BASIC OPERATIONS
GETTING STARTED
WORDS L . i s e e e e e e e e e e e e e e e e e
NUMBERS
THEPARAMETER&TACK................
ARITHMETIC 10
STACK MANIPULATIONS 10
DEFINITIONS . . . & . v 0 v ot et e e vt v e e e e v s 11
MODES . . . v ottt e v e e et e e e e e e e e 12
Exercises ¢ « ¢ v v v b e e e e e e e e e e 13

=3 ~3 B

= e e e e
. e e

« & e
m-QC‘JU'Iph".ON'r—l

2.0 EDITING AND PRINTING+ ¢ . v v v v v o v v o 17
2.1 BLOCKS AND SCREENS ., . . 17
2.1.1 Bloeks . . v . v s v e e e e e e e e e e 18

2.1.2 Screens 18

2.2 THE EDITOR ¢ v v v v v v v h v v v e 0 s s s 19
2,2.1 Editing by Line . , v 4 0 04 19
2.2.2 Editing by Character . 22

.
-
-

2.2,.3 COPYing . . 23
LOADING MULTIPLE BLOCKS s e e e e e e e e e e . 24
THE PRINTING UTILITY« « « v ¢ v v ¢ e v s v « 24
OVERLAYS 25
EXEreises . .« v v v v v v e v v v et e e e e e e e e e 26

Lo
a = »
[= N

3.0 ATA DECLARATIONS v« v v v v v v v s e e e e 29
CONSTANTS . . . e e e e e e e e e e e 29
SIXTEEN-BIT VARIABLES e e e e e e e e e e 29
BYTE VARIABLES « . .« v o v o v v v v v 30
ARRAYS . . . e r et e e e e e e e 31
OTHER MEMORY OPERATIONS) Vo e e e e e 32

ExXercises . . & . v v v v e h e e e e e e e e e e e e 33

oao:oocomc
D Lo B = B

4.0

[]
-
=

6.0

Appendix A. A SUMMARY OF FORTH RULES,

Appendix 3.

CONDITIONAIL BRANCHES AND LOOPS

4.1
4.2

4.3
4.4
4.5
4.6

4.7

CONDITIONAL BRANCHES . . e
COMBINING TRUTH CONDITIONS
Execrcise ., .
INDEFINITE LOOPS e 0o
THE RETURN STACK

Exercise ., . .
CONTROLLED LOOPS .

Exercises . .

NESTING S’I‘RUCTURI:.S

Exercises . .
RECAPITULATION

SAMPLE PROGRAM DEVELOPMENT

5.1
5.2
5.3
5.4
5.5

PROGRAMMING PHITLOSOPHY
TOP-DOWN DESIGN . ,
TESTING AND DEBUG(“ING
CROSS-COMPILATION .

THE TV REMOTE CONTROL UNI'I‘ .

ASSEMBLER FEATURES .

6.1

CODE DEFINITIONS

6.2 NOTATIONAI. CONVENTIONS

microFORTH GLOSSARY., ., . .

iti

49
49
50
50
50
50

57
57
58
61

63

FIGURES
Figure 1,
Figure 2.
Figure 3.

Figure 4.

<N

Figure

TABLES
Table 1.

Table II.

Table III.

Table 1V.
Table V.

Table VI.

FIGURES AND TABLIS

THE microFORTH SYSTEM
FORTH'S TWO STACKS
NESTING DO ..., LLOOPS

TV REMOTE CONTROI UNIT

THE DEFINITION OF TV IN SCREENS ,

ARITHMETIC OPERATORS
COMPARISON OPERATORS
STACK MANIPULATION OPERATORS .
EDITING COMMANDS e e e e
EDITING CONVENTIONS.

MEMORY OPERATORS .,

46

51

14

15

16

27

28

34

PREFACE

In order to make rcading our documentation as easy as possible, we at FORTII,
Inc. use the following conventions in manuals:

1.

All FORTH words that appear in prose passages as examples of
commands are enclosed by at least onec extra space on each
side. Words defined as occasional cxamples are also set off.

Where there might be confusion about who types what, we
underline the computer's output.

In all examples that show stack usage, the top item of the
stack appears to the right (as it does on your terminal screen
when you are entering).

We provide brief examples of definitions as often as possible.
After the normal, horizontal placement of a definition, we often
provide a vertical breakdown with components of the definition
in a column to the left and explanations or comments on key
words in a column to the right:

: DEFINITION condition IF¥ this ELSE that
THEN continue ;

where:

: DEFINITION

condition Places a condition (non-zero/zero) on
the stack.
IF Removes and tests the number on the
stack.
this Executes "this" if the number was
non-zero (true).
ELSE
that Executes "that" il the number was
zero (false).
THEN
continue ; Continues from both lines.

This expanded version is for illustration only; you will always use
the horizontal format.

mieroFORTII PRIMER August 1978 Page 3

share the information in thesc packets. The documentation of Options likcwise
accompanies delivery of each particular optional program,

Since we want you to inake the most of your mieroFORTH system, we have
developed a Hotline serviece, programming classes, and the FORTH, Inc,
Newsletter.

During regular business hours a programmer is available to help you with
suggestions about troubleshooting., Sinee all of our programmers work on-site
when necessary, at times there will be a slicht delay before someone rcturns
your call. Try, therefore, to place your call as soon as you arc sure you have a
problem.

Classes arc held at FORTH, Inc. whenever the number of potential students
warrants one. Each microFORTH class fcatures an overview and then the focus
turns to the specific needs of those who attend. If you would like to
participate in such a elass, use the lotline to add your name to the request
list for the next scheduling.

A new aid, the FORTH, lnc. Newsletter (And So FORTH ...), is being published
quarterly. IEach customer receives two copies; each issue features articles on
programming. Sinee the content is intended to reflect user concerns, your
questions and suggestions will be appreciated.

While you are reading any FORTH, Inc, manual, we hope you will make notes
about questions raised but not answered, passages that are not clerr, and,
cspecially, any mistakes you may find. We inelude a "Reader Comment Form"
with both the Primer and the Technical Manual to remind you that we need your
feedback in order that we may serve all our users well.

microFORTIT PRIMER Page 7

1.3 NUMBERS

Numbers can be expressed in any base--decimal, octal, and hexadecimal are
standard, At any time you can use the commands DECIMAL , OCTAL , or
HEX , or you can definec another base to establish the appropriate way to treat
all succeeding numbers, both for input and output. In general, you should pick
one base and stick with it throughout all your definitions to avoid confliets in
interpretation. Initially, FORTH assumes the DICIMAI mode.

Numbers may be typed in as positive (unsigned) or negative (preceded by a
minus sign) integers. Positive numbers in the range 0 through 63335 are
acceptable because they can be stored in sixteen bits, 8Signed numbers in the
range ~32768 to 32767 can be accepted; they arc stored in two's complement
form in sixteen bits. It is important to note, however, that positive numbers
larger than 32767 can be interpreted as two's complement negative numbers,
especially if they are involved in arithmetic operations. Numbers larger than
sixteen bits will merely be truncated to sixteen bits.

Numbers are entered by typing them at the terminal. As with words, numbers
arc bounded by spaces. The interpreter will first search the dictionary for the
"word" entered. If it is not found in the dictionary, the interpreter tries to
convert the "word" to a number. If the number conversion succeeds, it is
placed on the parameter stack, which will be desecribed in the next scetion.

Since all numbers are stored in binary form, you can take advantage of nuineric
base selection to perform number eonversions, To convert a decimal numnber to
hexidecimal, for example, type:

DECIMAL 583 HEX .
and you will receive the response:

247 OK

But remember that you stay in HEX mode until you type in the cominand
DECIMAL again.

1.4 TUE PARAMETER STACK

All computer programs exist to manipulate data by using an established set of
parameters. Most of the parameters that FORTH words use to manipulatc data
are maintained on a push-down stack, called the parameter stack. This stack,
which is sixteen bits wide, is similar to those in pocket calculators that use
postfix function keys or Reverse Polish Notation. A push-down stack is a
partiecular arrangement of memory storage; FORTH words that refer to the
parameter stack do so by accessing only the topmost items (the ones most
recently placed on the stack). A conventional random-access memory (RAM) ean
be used as n Last-in-First-Out (LIFO) stack, such as those shown in Figure 2.

During the boot proeedure a single pointer is initialized to point to a particular
location in memory. Onee this pointer is initialized, the paramcter stack grows
toward low memory., When information is to be written onto the stack, the
address in the pointer is decremented and the information is then stored at the
location being pointed to. When information is to be read from the stack, the
information is feteched and then the pointer is ineremented, Note that while
reanding from the stack effectively removes the information forevermore (uniike
reading from conventionally organized memory), writing to the stack preserves

microFORTH PRIMER Page 9

all the prior contents of the stack that have not yet been read.
One of the basic rules of FORTH, then, is:

RULE 2: MOST WORDS REQUIRYE PARAMETERS ON A
PUSH-DOWN STACK.

Actually, FORTH manages two stacks, although we will defer discussion of the
other one (always called by its full name, the return stack) until later in the
manual,

To place a number on the stack, you can type it as part of your input commands.
Now type:

2468 (followed by a carriage return)

When you have typed in the example above, you have created a push-down stack
that looks like the parameter stack in Figure 2.

One of the simplest kinds of operations FORTII provides for manipulating the
stack is one that prints the contents of the topmost item. FORTH's predefined
symbol, the period or dot, causes the topmost item of the stack to be removed,
converted to a number, and then displayed., If the stack is as shown in Figure
2A, then for each period you type in, the successive topmost item of the stack
will be revecaled. If you type five periods followed by a carriage return, your
CRT screen will look like this:

.86420.STACK EMPTY!

Each time the dot is encountered, the stack is depleted by one item. Since
there were only four items on the stack (put there by the four operations 2 4 6
8), the fifth request for a display from the stack displays garbage (in this case
the number 0), and underflows the stack. FORTH won't let you get away with
that; it issues a copy of the offending word (in this case, a period), followed by
an error message, STACK EMPTY!

When you receive any error message (whether STACK EMPTY! or ? or
DICTIONARY FULI!), you must remember that your stack has been emptied.
Before you can perform the operation you were attempting, you must reenter the
necessary parameters.

RULE 3: ANY ERROR MESSAGE EMPTIES BOTH STACKS.

The dot operator is useful when you are debugging a definition., If you have
frouble, you can display the stack, item by item, and comparc the contents with
what you cxpected. That will usually isolate the problem. Of course, reading
the stack items will cause them to bc removed. If you're debugging, after
you're satisfied with the displayed values, you may simply type thosc values back
in again:

2468

microFORTH PRIMER Page 11

Also remember that you should never remove more iteins than you have first
pushed onto the stack.

After you have become familiar with both the arithmetic operators and the stack
manipulators, you will want to create your own combinations, I'or example, a
convenient way to double a number is to add it to itself. ‘This can be
accomplished by the sequence:

DUp +

where the DUP is used to duplicatc the number on the stack. Similarly, to
squarc a number you use:

DUP *

1.7 DEFINITIONS

Part of FORTH's power lies in your ability to define your own new words.
Imagine that you frequently want to add two numbers and print the sum; you
could always type in + and . for each operation. That, however, could lead
to errors. Even in such a simple case it is possible to utilize FORTH's power,
since it would be easier to type one word instead of two.

Try defining a new word, named ADD , by entering:
: ADD + .3
Here is what each component in this defining operation does:
A colon begins a definition.

ADD The name of the word to be added to the dictionary
follows the colon that starts a definition. For reading ease
the name is followed by threc spaces,

L The FORTH words define what to do for ADD .

; A semicolon ends a definition.

After making this definition, you merely type in two numbers and then the word
ADD in order to compute and print the sum of the two numbers:

1 2 ADD 3 OK
4 5 ADD 9 OK
854 21 ADD 875 Ot

Since ADD has now been defined to be identical to the executed sequence of
+ followed by . , you can use either ADD or the sequence to get the
desired answer printed out.

What would have happened if you had used ADD Dbefore the word was defined?
FORTH won't allow that. [t prints out the undefined word followed by a
question mark. Try this with a different word, such as PLUS ; you will see
the crror message:

L 2 PLUS PLUS ?

microFORTI! PRIMER Page 13

905 . 905 OK Executes immediately. Note the
interaction.

: SBHOW 905 . ; OK Compiles; nothing happens yet.

SIIOW_905 OK Executes the compiled routine to

produce the desired result,
There are vast nmnbers of variations on these basie themes, as well as whole
groups of other words alrcady defined in FORTU. To learn quickly, you MUST
practice with the basic YORTH words, the words deseribed in the following
chapters, and the words you evolve out of experiments. Develop a kind of

notation which will leave you with a sketch of what you have done {to help you
avoid making the same inistakes twice).

EXERCISES
1. What is the difference between:

DUP * DUP * and DUP DUP * *

2. Using only two FORTH words, define a word called 2DUP to
duplicate the top pair of stack items. That is, after:

12 3 2DUP
the stack should contain:

1 232 3 (second 3 on top)

3. What is the difference between:

OVER SWAP and SWAP OVER

mieroFORTI PRIMER

WORD

2%

ABS

MAX

MIN

MINUS

MOD

Table I. ARITIIMETIC OPERATORS

DESCRIPTION

Adds,
Subtracis.

Multiplies (unsigned).

Doubles an entry (unsigned).

Divides (unsigned).

Leaves the absolufe
value.

Leaves larger of
top two entrics.

L.eaves smaller of
top two entries

Performs twos
complement
{unary minus),

Leaves modulus
(division remainder).

EXAMPLE OF

STACK BEFORY

top

Page 14

EXAMPLIL OF
STACK APTER

top
|

9 8

2.0 EDITING AND PRINTING

When you first brought up your microFORTH system, you inserted a diskette in
the disk drive and booted up. Very simply, this boot procedure read a
precompiled program from the diskette whiech in turn read in mierolVORTH
source text from diskette and compiled it into RAM. Compiling, in FORTH, is a
process which translates source text into dietionary entries that contain machine
code and addresses., Only the machine code and addresses reside in memory;
source text remains on diskette,

When you simply type trial definitions at your terminal, they arc compiled
immediately into your dietionary and your source text is "lost" (i.c., not
preserved on diskctte). When you reboot your system, any such occasional
definition will have been cleared out. (It is this aspect of FORTH that allows
you to test definitions in an impromptu manner.) If you should then want to
use any of your occasional definitions again, you would have to type them in
once more.

It is mueh more convenient to put your tested source text on the diskette just
as the microFORTII system programmers have done. Using the same process
that boots the system (see Section 2.1.2), your definitions ean be compiled into
memory from the diskette rather than from the terminal.

Before discussing how text is entered on diskette, let's consider the structurc of
the diskette.

2.1 BLOCKS AND SCREENS

Each diskette contains a fixed number of blocks; each block is numbered and
contains 128 bytes. Whenever a block is needed, it is requested by its bloek
number, The bloek number reflects its relative (logical) position on the
diskette so that Block 0 is the first bloek, Block 1 the second, and Block 1999
the last block.

Source text in mieroFORTII is formatted for the terminal in a sereen. A sereen
is a set of 1024 characters formatted as sixteen Iines of sixty-four characters
cach. Bince a character occupies one byte, it takes 1024 bytes to hold an
entire sereen. A screen of text is therefore held in eight contiguous disk
blocks. A disketlte may hold 250 sercens of source text, numbered from 0 Lo
249, Sereens 0 to 60 contain your basic microFORTH source, including whatever
options you may have ordered, plus a small amount of pre-compiled binary
information. The rest of the screens are available for your use.

mieroFORTIE PRIMER Page 18

2.1.1 Blocks

To place a speeifie disk block into computer memory, use the FORTH word
BLOCK preceded by the appropriate number., Thus,

15 BLOCK

places Bloek 15 in memory. BLOCK also leaves the memory address of
the zeroth word of the block on the stack.

If any data is written into the block in memory, the block must be marked
so that the revised block contents will replace the old on the diskette. The
word UPDATE is used for this purpose. UPDATE marks the most
recently used block for writing to diskette, although it may or nay not be
written to diskette immediately, The word FLUSH is used {o force any
"updated" blocks out to diskette and should be used before shutting down the
system,

These words cormprise the basic bloek 1/0 routines. To understand them
more thoroughly it is necessary to understand the nature of virtual memory
as FORTH uses it. The memory address that is returned to you in the
routine named BLOCK denotes the location of one block buffer. The
block buffers reside at a fixed location in high memory (above the return
and parameler stacks) and each contains 128 bytes of data from diskette
plus a block ID word (two bytes) with a value between 0 and 1999, When
memory permits, your microFORTH system as delivered will have eight
block buffers. This number gives a good trade off between meinory usage
and disk accessing.

The word BLOCK first searches the block buffer IDs to see if the block
currently resides in the block buffers. If it does, no diskette access is
made. Otherwise, the block is rcad from diskette, UPDATE sets the
high-order bit of the high-order byte of the Bloek ID to one if the bloek is
to be written to diskette. A block is written to diskette if its buffer is
needed by another BLOCK request or if FLUSII is specified.

2.1.2 §_c=reei£

When source text is to be interpreted, you will use the word LOAD
Thus,

150 LOAD

interprets the ecight blocks that make up Sercen 150 ns if you hed typed all
the text this sereen contains at the terminal. The immediate implication is
that a sereecn can contain both definitions and any executable commands.
Any definitions will be compiled; any other eommands will be executed.

Line 0 of an emply screen on a microFORTII diskette begins with two null
characters to prevent the PRINTING utility from listing them. For this
reason, Line 0 must always be rcplaced before attempting to LOAD or
SHOW

mnieroFORTH PRIMER Page 19

To display the contents of a sercen, use the word LIST . For example,
120 LIST

formats Screen 120 into sixteen lines of sixty-four characters cach and
displays them on the terminal. LIST also reinembers the current screen so
that once you have listed a sereen, you may re-list it by siinply typing L .
I. looks at the contents of the user variable SCR , which contains the
sereen number of the eurrent sercen. LIST is available at sll times on the
system, -

2.2 THE EDITOR

The conventions for the EDITOR are identical to the conventions for the rest of
FORTH. On most mieroFORTH systems the EDITOR is resident. On these, to
gain access to the EDITOR, simply type:

EDITOR

On the RCA COSMAC, however, the EDITOR is not resident and must be loaded
by Lyping the command:

EDIT LOAD

On all microFORTH systems, you retain access to the EDITOR until you compile
a definition. After compiling a definition, you need to invoke the EDITOR
vocabulary again if you are to use it. On the COSMAC only, if you have loaded
an application that replaced the EDITOR, you must reload it (see Section 2.5,
"Overlays").

Within the EDITOR you can call on two types of editing words: those that

operate on whole lines and those that work on characters. Sereen 14 contains
the former and Screen 21 the latter.

2.2.1 Editing by Line

In Line 0 of caeh screen that contains source text, it is & FORTH
convention to place a parenthetical comment that briefly describes the
contents of that sereen. Comments are written in FORTH in the following
form:

(COMMENT)

The word (starts a comment; one or more spaces must follow the left
parenthesis because (is a word. The succeeding chavacters arc ignored by
FORTII until the next right parenthesis. The PRINTING utility (described
in Section 2.4) can produce a convenient disk index for you by displaying
the first line of each sercen, preceded by its sereen number.

After listing a serecn into which source text is to be entered and gaining
access to the EDITOR, enter a linc of text in the current scereen by typing:

0 P { PRACTICLE SCREEN)
12 P THIS IS OLD LINE 12

microORTI PRIMER Page 21

words P and R . After such a command as 1 P followed by two
spaces and a carriage return, you simply deeclare the other lines that you
want o be Replaced:

1P OK
2R 12 R OK

converis Lines 1, 2, and 12 to spaces.

The FDITOR word D is used to Delete the line whose number is on the
stack. ‘The deleted line is fiest moved to PAD so that it is not actually
lost. The sueceeding lines in the sereen arc moved up one and renumbered.
Line 15 remains the same and is not blanked. lor example, 13 D will
move Line 13 to PAD, move Line 14 to Line 13, and duplicate Line 15 as
Line]4 Never use D on Line 15! If you wnnt to blank Line 15, use It
or P ; if you want to copy it elsewhere, use T and then 1 or R .

The line in PAD can be Inserled by the EDITOR word 1 . The contents of
PAD) are inserted in the next line after the line whose nwinber is on tihe
staeld, %uccc,edmg, lines are moved down; Line 15 is lost. Never try io
insert after Line 15; to insert text as Line 0, use -1 1 .

D and 1 can be used to inove lines of text from one place to another,
To exchange Lines 4 and 5, for instance, all you need to do is type:

4D Puts Line 4 in text buffer and moves sueceeding lines up
one.
41 Inserts it after the new Line 4 and moves succeeding lines

down one.

This cxample was purposely used to illustrate an important point about D
and I . A line number refers to the current position of a line within a
sereenn. Because D and [move lines beyond the point of insertion or
deletlon, they effectively renumber all subsequent lines. While you could
get in the habit of a1wayq relisting the current scereen after each and every
use of I or 1, this is tedious if your terminal is, say, a teletype. You
should acquire the habit of always visualizing the effeet of these words as
you type them.

The word A (for Add) ecombines some of the properties of I and P . A
expects a line number on the stack, after which a line of text will be
inserted. The line of text to be inserted is not yet in PAD, however;
instead, you must enter it after the A and a space., As with P ther‘e
must be at least one character of actlual text; as with 1, all sueceeding
lines are moved down and Line 15 is lost. The text is terminated by a
carriage return,

To suminarize, the vocabulary for editing lines includes the following words:

micro¥ORTH PRIMER Page 22

n P otext Puis succeeding text (until carriage rveturn) in PAD
and Line n,

n T Copies Line n into PAD), types it, and lecaves n on the
stack.

n R Replaces Line n by the contents of PAD,

n D Copies Line n into PAD and deletes it from the

eurrent sereen, (Avoid 15 D .)

n I Inserts the contents of PAD after Line n.
(Avoid 151 .)

n A text Puts succeeding text (until carriage veturn) in PAD
and inserts it after Linc n. (Avoid 15 A .)

A little practice with these commands will male them your tools.

While you are editing, some portions of the sercen you arc working with are
in main memory and some of them may be back out on the diskette. Vo be
certain that all your changes get out on the diskette, you nced to ilype:

FLUSIH

to forece writing the buffers to disk. This is most important before
exceuting a new definition, removing a diskette, or shutting down your
system,

2.2.%2 lLditing by Character

In the EDITOR vocabulary there are also commands for cditing characters.
The character editing commands operate on strings within a scleeted line. A
character pointer reminds you of your position on a specifie line.

The command 1" positions the character pointer to the beginning of a
line, Thus 1 T prints Line 1 of your sereen. The command TOP will
position the character pointer at the beginning of the scrcen (e.g., the
first characier of Line 0). The character position in the sercen is
controlled by the user variable R# . It is used to comnpute the line nuinber
and to control where searches begin, ‘The following commands are
available. (Remcmber these are FORTH words and therefore they st be
sepavated by a space from any text following them.)

1P text IFinds the next instance of "text" after the current
pointer position. Prints the line on which it oceurs
and positions the character pointer at the charaeter
after "text."

N ¥inds the next oeccurrence of "text" (used after T);
prints the appropriate line; and positions the
character pointer at the character that immediately
follows the text.

C text Inserts "text" at the currvent pointer position in the
current line.

microFORTII PRIMER Page 25

The phrase:
n m SHOW

generates all triads neccssary to show the range of sereens fromn n through m
inelusive,

The phrase:
n in INDEX

produces an index of the sercens in the range of n through m-1. The index
consists of the first lines of the rcquested sereens, preceded by the sereen
nuinber. The index is formatted sixly screens to a page.

In the PRINTING utility, Line 14 of Screen 23 is printed at the bottoin of each
page of output. You may wish to edit appropriate information into this line,
such as your company's name and/or the date.

If you usc a TI'TY, can usc the microFORTH PRINTER sereen on some other
printing device, or have written a printer driver, you can direct the listings to
the printer by lyping:

PRINTER L.OAD

before PRINTING LOAD . The PRINTER screens rc-define the input and
output words to access a hard-copy device.

2.5 OVERLAYS

On your devclopment system, you may define several application voeabularies
which you inay not wish to be compiled all at the same time (indeed, they may
not all fit). An overlay is an application vocabulary whieh, when loaded,
automatically replaces the previous application.

Overlays are implemented as follows. The last definition in the resident FORTH
system is the null definition:

: TASK ;

All user-defined words will be loaded after TASK . [If a load screen begins
with the phrase:

FORGET TASK : TASK ;

then all dictionary entries from TASK on are "forgotten" from the dictionary.
The null definition : TASK ; is then put baek in the dictionary to mark the
beginning of the overlay. Conventionally the phrase:

FORGET TASK : TASK ;

appears in Line 0 of the load screen (after the deseriptive comment), so that it
will identify this sercen as the load sercen of an overlay in an index, See the
PRINTING utility (Screen 27) for an example of suech an overlay.

nierolFORTH PRIMER August 1978 Page 206

On any systeim, the use of overlays insures that the definitions of cach
application are made in terms of the initial, standard set of mieroFORTIH words
rather than in terms of any new mcaning that another voeabulary may have
given to a particular word. This will happen automatically if you adhere to the
convention of using FORGET TASK : TASK ; at the beginning of cach
application vocabulary.

On RCA COSMAC systems, due to the limited amount of memory available, this

is especially important; the EDITOR here is an overlay that needs to be
replaced by your application voecabulary,

BEXERCISES

L. Enter some text, such as a series of punch lines to jokes or
names of friends, into each line of your practice sercen.

2. Exercise until you can quickly:
a. Exchange Lines 13 and 14 (with no duplieation of text).
b. Return your sereen to its previous state,
c¢. Exchange Lines 15 and 13.
d. Lxehange Lines 15 and 0. Recepeat,
e, Blank line 15.

f. Replace Line 5 with brand new text, two different ways.

3. Blank Lines 1 through 15 of your practice sercen.

Add the eonventional phrase to the first line that will make this
sereen o sainple overlay,

Using such FORTI words ss the avithmetie operators (Tabl 1),
the stack manipulators (Table 1I), and others from Appendix A,
cercate at least three new words.

Enter your definitions of 2DUP and the new words into the
practiec sereen,

Review Table VI, "Lditing Conventions," and check the sereen,
Load it.

Test and debug it.

microFORTH PRIMER Page 27

n A text
C text

n D

I' text

n I

N

n P text
n R

n T
TILI: text
X text

Table 1V, EDITING COMMANDS

Puts succeeding text (until earriage rciurn) in PAD and
inserts it after Line n. (Avoid 15 A .)

Inserts "text" at the current pointer position in the current
line,

Copies Line n into PAD and deletes it fromm the current
screen. (Avoid 15 D .)

Finds the next instance of "text" in the screcn after the cwwrent
pointer position, Prints the line on which it occurs and

positions the character pointer to the character after "text."
Inserts the contents of PAD after Line n. (Avoid 151 .)

Finds the next occurrence of "text" (used after F); prints the
appropriate line; and positions the character pointer to the
character that immediately follows the text.

Puts succeeding text (until carriage return) in PAD and Line n.
Replaces Line n by the contents of PAD.

Copies Line n into PAD, types it, and leaves n on the stack.
Deletes all characters through and including "text," beginning at
the current pointer position. TILL only operates within the

current line.

Finds and deletes "text" from the current screen. The search
for "text" begins at the current pointer position,

microFORTI PRIMER Page 28

TABLE V. EDITING CONVENTIONS

At FORTII, Ine. we have cvolved conventions for editing sercens to make source
text more rcadable. While these conventions arc not dietated by the nature of
FORTH, we rcecommend them as good programming practice.

1. Line 0 of each sercen begins with a parenthetical comment that
describes the contents of the sereen. The comment identifics
the sereen and is conveniently listed by the PRINTING
utility's INDEX .

2. A single sereen contains source text for words velated to some
one function or isolatable portion of a funetion. Do not put
unrclated words in the same sercen.

3. Do not overpack a screen., Leave several blank lines for
cxpansion. There is no advantage to conserving screens.

4, Do not define more than one word on a line. An exception
might be two or three related constants or variables, or a
couple of very brief related colon definitions.

=24
-

Leave three spaces after the name being defined in a colon
definition, to set it off from the definition.

6. Break colon definitions up into phrases, separated by double
spaces, so that each phrase describes a particular operation:

: DOUBLE X @ 2¥ X 1

7. If a definition takes more than one line, indent three or more
spaces on the seecond and succceding lines.

8. Separate instructions in CODT definitions with three spaces. For
example:

CODE KEY BREGIN 17 INP 2 # ANA 0= NOT END
F6 INP A L MOV 0 H MVI IIPUSH JMP

The definitions and screens in Chapter 5, as well as the listings that accompany
your mieroFORTH system, provide good examples of well--organized FORTH
screens,

microFORTH PRIMER Page 31

takes the low-order byte of the second stack item and stores it into the byte
addressed by the top itein, deleting both items from the stack.

As one might expect on mieroprocessor systems, the byle feteh and store
operations are both faster and more conservative of mewmory than their
sixteen-bit counterparts. This makes a noteworthy difference between FORTII
and other high-level languages. TFORTIl does not discriininate between data
types by context but rather by the operators that arc used to manipulate the
data. Thus a sixteen-bit named variable could contain either two characters of
a word, or two eight-bit binary numbers (such as a byte vector), or a
sixtecen-bit binory nuber. Its usage depends upon the operaiors that you choosc
to manipulate its data. This method produces more readable definitions, more
efficient execution, and more flexible programming.

Byte variables can be declared in a manner similar to their sixtcen-bit
counterparts by using the FORTH word CVARIABLE . Just as VARIABLE
does, CVARIABLE needs an initial valuc on the stack, followed by the name
being defined. The space used, however, is only one byte wide, which limits you
to numbers in the range 0 to 255. Often this range is ore than you need., If
you wanted to keep track of the current channel number to which a particular
TV set was tuned, you could use:

n CVARIABLE CHANNEL

wherc n represents the initial channel number. (The number of 1V channels
would never exceed 255.)

After a CVARIABLE is defined the operators C@ and C! may be used on
them. Mixing Cq@ Ct @ ! and +! between definitions is
perfectly legal. Be sure, however, that you understand exaectly what result you
intend to achieve.

3.4 ARRAYS

Arrays of data items are important in many applications. Yor example, instead
of handling a set of ten different temperature readings as T0, 11, ..., T9, it
would be better to use ten successive data elements named TEMP ., Through
suitable addressing arithmetic you can compute the requisite element's address.
This is more flexible to program as well as more econowmical of dictionary
space,

An array is established by setting aside space in the dietionary. This is done by
using the FORTII variable H , which points to the next available byte in the
dictionary space in memory. DBy inerementing H you ean skip over a
specified number of bytes, thus creating space for the appropriate number of
clements. In thc case of a set of temperatures, you simply write:

0 VARIABLE TEMP 18 II +!

where:

microFORTH PRIMER Page 33
destination address. The contents of the destination region are overwritten; the
source region remains the same.
Beenuse they are destructive writes into memory (where the dictionary resides),
these words must be used extremely carefully. When a region of memory is
specifically reserved, however, as with arrays or block buffers, ERASE and
MOVE enn be used to initislize arrays or to copy arrays from one place to
another,
In the examnple used above,

TEMP 20 KRASE
clears the temperature arrays.
Defining a sccond array:

0 VARIABLE 27TEMP 18 1T !
and using MOVE :

TEMY 2TEMP 20 MOVE

would copy the array in TEMP into 2TEMP.

EXERCISES

i, Define EXCHANGI to exchange thec contents of two
variables, That is, if A and B are variables, then the
result of the eommand A B EXCIIANGE should be to place the
value of A in DB and the value of B in A .

2. Define TRANSFER to move data between two arrays of the
same length, (Define CONSTANT to specify a length.)

3. Using the arrays defincd above, clear the first array and
TRANSIE VR the initinlized array to the second array.

microFORTH PRIMER August 1978 Page 37

For example, suppose an input data item (placed on the stack by INPUT) is to
be regarded as either a decimal digit (if it is < 9) or as a code for an analog
function (if it is > 10). ‘Then the definition:

: DECIDE INPUT DUP 9 > II' PERFORM LLSE
DIGIT ' THEN ;

cither PERFORMs the analog function if the INPUT is greater than nine or
clsc saves the value in the variable DIGIT .

Two additional comparison operators are 0< and 0=, which may be defined:

: 0<

0 <
: 0= 0 =

H
.
’

to test for negative or equality to zero, respectively., (Actually 0< and 0=
ore defined in machine code while <, >, and = are defined in terms of
them.) 'These operators also replace a single argument by a truth value,

To negatc a condition, use the word NOT , which rcplaces zero by one, and
replaces any non-zcro value by zero. Because this is identical to the action of
0=, the definition of NOT is just:

: NOT 0= ;

In the following example we include a specific test for zero before storing a
data item:

: ITEMS DUP II' DATA ! ELSE DROP THEN ;

where:
: I'TEMS (The upper limit is on the top of the stack
at entry.)
DUP IF Tests for the non-zero upper limit.
DATA ! Stores the value into the variable DATA
if it is non-zero.
LLSE DROP Disecards any unwanted zero,

THEN ;

Since it is common to ignorc zcro values during an operation, microFORTII
provides the word -DUP . It duplicates the top of the stack only if it is
non-zero. Using ~DUP , the definition of ITEMS Dbecomes shorter:

: ITEMS --DUP I DATA ! THEN ;

In other words, -DUP elimminates the use of the phrase ELSE DROP . The
definition of --DUP , by the way, is just:

: -DUP DAy 118 pupr THEN ;

mnieroFORTH PRIMER August 1978 Poge 38

4.2 COMBINING TRUTI CONRITIONS

Sometimes it is useful to combine several truth values, Lor instance, you may
want to cxccute statement X only if both paramcters on the stack arc hon-zero.
Although this is a trivial example, it serves to demonstrate that iwo conditions
can be met in one definition. The logical operators found in Table II are used
in combining fruth conditions.

The word AND performs a logical "and" of the top two stack items (bit by
bit). This can be used to define compound conditions. ¥For cxample, if FROM
and TO arc constants, then you can define BETWIEN :

+ BETWEEN

FROM OVER < Compares the number with FROM .

SWAP Swaps the truth value with the number to
be tested.

TO < Compares the number with TO .

ANTD) Takes the "and" of thc two truth values.

BETWEEN determines if the top stack item is belween JFROM and TO ,
exclusive,

Because the logical "or" function can usually be handled by addition, no special
IFORTH word is supplied for this, although users, of course, can write their own.

Truth values are really no different from numbers and niay be used
arithmetically. Consider this example, which ecomputes (the characteristie of)
the base-ten logarithm of a number:

: LOG
DUP
9 > Leaves onc if n > 10.
OVER 99 > Leaves one if n > 100.
+ Adds the running sum of the truth values.
OVER 999 > Leaves one if n > 1000,
+ Adds to the running sum.
SWAP 9999 > Leaves one if n > 10000,
s Adds to the running sum.
LEXERCISE

l. Given the constants FROM and 10 , define a word named
OUTSIDE that will leave true on the stack if the top item does
not fall between TROM and TO .

microFORTH PRIMER Page 39

4.3 INDEFINITE LOOPS

All loops are governed by the values on the stack., Here is the structure for an
indefinite loop (words in lower case represent your applieation's named and
tested definitions):

: EXAMPILE DBEGIN process condition END continue ;

where:
: EXAMPLE Creates a dictionary entry for the new
word, EXAMPLE .
BEGIN Marks the beginning of an indefinite loop.
process Defines the action(s) to be executed one or
more times,
condition Leaves a truth value on the stack, either
zero for false or non-zero for true.
END Pops the value off the stack, returning to
BEGIN if the condition is zcro.
continue ; Continues execution after the loop ends.

BEGIN marks the beginning of the loop. The body of the loop (here indicated
by the words “process" and "condition") is exccuted each tiine through the loop.
The body of the loop must leave a numeric value on top of the stack; that
value is examined each time the END statement is reached. If the value on
top of the stack is zero (false), the loop is repeated; to terminate the loop, any
non-zero value (true) is placed on the stack. Thus, loop repetition is direectly
under program control. When the loop is ended, the word following END will
be executed., END removes the number it tests from the stack.

Suppose ARRAY is the starting address of an array of sixteen-bit entries
containing at least one non-zero entry. You can find the address of the first
non-zero entry by the loop:

+ SEARCH ARRAY 2 - BEGIN 2+ DUP @ END ;

where:
: SEARCH

ARRAY 2 - Decrements the array address by two.

BEGIN Begins an indefinite loop.
2+ Increments the address by two.
DUP @ Fetches the contents while saving the

address.
END ; Ends the loop at the first non-zero entry.

In the body of the loop, 2+ inerements the address on the stack before the
examination of the contents of the address. Consequently, you must decrement
the address ARRAY with the phrase 2 - before entering the loop. The loop
terminates when a non-zero entry is found. Notice that DUP preserves the
address on the stack during the loop and that, once the loop is complete, the
last address remains on the staek.

It is possible to create a simple program that will execute forever:
: FOREVER BEGIN whatever 0 END ;

The zero preceding END guarantees re-execution of the loop body.

microFORTH PRIMER Page 40

Often you will wish to cxceute some phrase a specificd number of times (say
ten). ‘That ¢an be done by writing this BEGIN ... UND sequcnee:

¢ TEN-TIMES 0 BEGIN pbrase 1+ DUP 10 =
END DRODP continue ;

wherc:

: TEN-TIMES

0 Places a counter on the stack.
BEGIN
phrase Provides the action(s) to be repeated.
1+ Increments the counter.
DUP 10 = Tests for equality to ten,
END
DROP Discards the counter.

continue ;

Initially, the top of the staek is zero; after the body of the loop (the useful
work) is performed, the counter at the top of the stack is incremented and
compared to ten. If ten has been achieved, the END word will cause control
to "drop through" to the next word. Otherwise, control will return to the
BEGIN at the start of the loop.

Notice that there are seven words that must be cxecuted (five of them
repeatedly) to implement this loop. Also, if the body of the loop needs to add
or remove successive items from the stack, the counter at the top of the stack
must be accounted for and operated around. In this case a controlled loop
would serve your purpose better. Controlled loops are discussed in Section 4.5,
after consideration of the return stack, which is frequently needed for the
initialization of controlled loops as well as other operations.

4.4 THF RETURN STACK

As explained in Chapter 1, FORTH uses two stacks. The most visible stack is
the parameter stack, which is used to manipulate parameter values and memory
locations, The second stack, the rcturn stack, is used primarily for prograin
control, Values saved on this stack inelude return addresses for colon
definitions and counters for controlled loops. “The two stacks segregate
parameters from program control vealues so that FORTI code is both more
readable and debugged easily.

FORTH's vse of the two stack srehitecture came about beeause of the hazards
inherent in conventional single stack programs in whieh parameters, program
addresses, and other control information are all combined together in the samce
stack., In such a system operations that should only be concernced with
parameters mnust keep track of other entries in the stack. When two staeks are
used, parameters and rcturn addresses need never be confused.

There are oceasions, however, when something on one of the stacks would be
useful if available on the other or when one component of a definition requires
one or more numbers that would otherwise be buried in the paramecter stack.
The basic FORTII vocabulavy therefore includes three important words for
transferring data from one stack to another:

mieroFORTH PRIMER August 1978 Page 41

<R Pops a number off the parameter stack and pushes it onto
the return stack,

R> Pops a number off the return stack and pushes it onto the
parameter stack,

I Copies the number that is on the top of the return stack
and pushes it onto the parameter stack, without changing
the return stack (see Scction 4.5 for an example of
usage).

<R and R> enable you to use the return stack as an auxiliary stack. Tor
example, you may transfer a number to the return stack prior to a calculation
which malkes heavy use of the parameter stack. Since the number is on the
return stack, you can fetch it back without disturbing the paramecter stack.
Judicious use of <R and R> can make definitions more rcadable.

Because the return stack is primarily uvsed to hold contreol vatuces, there are two
important constraints on youwr usc of it, the first of which is given here., Since
the second constraint coneerns DO ... LOOPs , it is given as Rule 9 (in
Seetion 4.6).

RULE 8: ANYTHING PUSHED ONTO THE RETURN STACK MUST BR
REMOVED WITHIN THI SAMI DEFINITION,

For example, if you define CRASH this way:
: CRASHL 0 <R

and then try executing CRASH , you will erash because the number placed on
the return stack by <R will be used by ; as a return address, with fatal
results, On the other hand,

: HARMLESS 0 <R BEGIN 1 END ©> DROP ;
is indeed harmless.

Sometimes it's a little difficult to remember which of the two, <R or R> ,
transfers data to the return stack. FORTH attempts to keep frequently used
words short to avoid lengthy manuscripts. The pictorial value of these two
words is intended to suggest moving data onto { <R)} or off of (R>) the
return stack.

You should develop the habit of referring to a FORTH Glossary (Appendix B)
when you need a reminder of the definition of any FORTIl word.

It is worthwhile to pause here long enough to work out what will happen if you
try to use a formation like:

... < phrase I phrase R> ..,

within a definition. Since <R moves the top parameter stack item to the
return stack and 1 copies the itein baek onto the parameter stack, this
construet results in leaving the parameter stack with a duplicate set of what was
formerly its top item., This is probably not the effect intended,

mieroFORTH PRIMER August 1978 Page 42

EXERCISE

1. Use <R and R> io define 28WAP , to swap the first iwo
byte pairs on the stack with the third and fourth pairs. That
is, after:

12345 28WAP

the stack should contain:

14523 {(with 3 on the top).

4.5 CONTROLLED LOOPS

An alternative definition for TEN-TIMES (from Seection 4.3) makes use of the
DO ... LOOP construet:

: TEN-TIMES 10 ¢ DO phrase LOOP ;
where:

: TEN-TIMES

o Places the loop parameters on the stack.
DO Transfers the loop parameters to the
return stack.
phrase
LOOP ; Repeats the loop ten tines.

The first two numbers ave, as always, placed on the stack (first ten, then zero).
The ten becomes the limit of the NO ... LOOP ; the zero hecomes the initial
value of the loop index. 7The loop will execute icn times with the index
starting at zero. The DO word causes the two top words on the stack to be
transferred over to the return stack; that gets the loop paramctiers off of the
parameter stack, After the body of the loop is executed, LOOP will
increment the index and comparve it with the limit. TIf the index is less than
the Jinit, the loop is repeated. If the loop limit has been reached or cxeceded,
the two values are removed froin the return stack and the next word {following
1L.OOP) is executed.

Bometimes it is useful to have access to the loop index in a DO ... LOOP .
The FORTH word [, which ean be thought of as Index in the DO ... LOOP
construet, fetehes the top of the return stack (where the loop index is stored)
and copies it onto the parameter stack without affecting the return stack. To
print out ten numbers, from zero through nine, use this sequence:

: PRINT 10 0 DO I . LOOP ;

where:

mieroFORTH PRIMER Page 43

: PRINT
10 0 DO Transfers the loop parameters to the return
stack,
I Copies the loop index (0, 1, 2, ..., 9) to the
parameter stack.
Prints out the loop index from the top of the
stack,
1.OQY Inerements the index (on the return stack),

compares, repcats ten times,

Notice that DO ... LOOP structures, like thosc using BEGIN ... HEND |
cannot be cxecuted in the immecdiate mode; they must appear only in
definitions of other words.

The loop index and limit don't have to be specificd in the definition. They may
be the result of prior computations or other stack manipulations, just as long as
they are on the stack when DO is cxecuted. Trequently, a definition that
uses & loop requires the upper limit of a loop to be specified. Suppose, for
example, you have a word called RIAD which rcads a single data item from a
device and stores it in the next sequential location of an array. You could then
define ITEMS :

: ITEMS 0 DO READ TLOOP ;

To read ten items, then, you would type the desired number of readings before
typing ITLEMS :

10 ITEMS

The ten would be on the stack when ITEMS was exccuted and would serve as
the upper limit for the loop.

It is important to remember that any loop will be executed at Ileast one time
because the increment-and-test function is at the end of the loop. It is not
possible to cxecute a loop zero times, only one or more.

Another example of a DO ... LOOP you might define at your terminal adds a
new capability to your FORTH system. The word LIST , described in Section
2.2, displays a screen from the diskette. Sometimes, however, you'd like to
list just a seleeted range of lines of the sixtcen available (especially if your
terminal is a teletype). You can now define a new word that will show the
selected lines:

: SHOW 1+ SWAP DO CI I SCR @ LINE
~TRAILING TYPE LOOP ;

Do not confuse this SHOW with the SIIOW in the PRINTING overlay that is
defined to perform differently.

This SHOW operates as follows:

microFORTH PRIMER Page 44

: SITOW
14 Inerements the last line number,
This insures that it is included in
the loop,
SWAP DO Arranges loop control and begins the
loop.
CR Outputs a ecarriage refurn and line
feed for a new line.
I B8CR @ Fetehes the line and sereen nuinbers
for LINE .
LINL Produces the location and count for
the requested line,
~TRAILING RReduces the count to omit trailing
blanks.
TYPE Types the line, removing the location
and count.
LOOP ; Repeats the loop until done.

Then the command,
2 5 SBHOW

will display Lines 2 through 5 of the current sereen, inclusive. This example
illustrates the useful phrase 1+ SWAP , used to convert an inclusive range of
numbers in increasing order to the parameters expected by DO . (The phrase
OVER + SWAP can be used in a similar manner to convert a start and count
into parameters for DO).

Another word used to conclude loops begun with DO is +LOOP . +LOQP
expects a number on the stack, which it adds to the loop index before compearing
the index and limit. For cxample, a word called EVEN may may use +LOOP
to print even integers ranging from zero to a specified limit:

: EBVLN 0 DO I . 2 +LOOP ;

The value 2 placcd on the stack before +LOOP is used as the inerement to
the index, so that the index steps through successive cven values. More
complicated uses of +LOOP involve eomputing the increment for +LOOP in
the body of the loop.

In use, LVEN produces the following result:

10 BVEN 0 2 4 6 8 OK

imicroFORTII PRIMER Page 45

EXERCISES

1. Define SUM to add the contents of an array, given its
starting address and length on the stack.

% Define POWER so that m n POWER computes the n-th
power of m, for nonmnegative n.

4.6 NESTING STRUCTURES

DOLOOP and 1I¥ ... ELSIE ... TIEN sequences may contain other such
sequences but only if they are properly nested. That is, one entire DO ...
LOOP pair may be inside another pair but they may not overlap. The
following loops, printed vertically for clarity, print out number pairs in the order
(1 1), (1 2), (13), ..., (5 3), (54), (55):

i PAIRS
6 1 DO Counts from one to five (major
loop).
I Fetches the major count value.
6 1 DO Counts from onc to five {minor
loop).
pup . Duplicates and prints the major loop.
I . Prints the minor loop.
SPACE Separates the two pairs with an extra
space,
CR Types a carriage return at the
terminal,
LOOP
DROP Discards the old major count value.
LOOP ;

This definition of PAIRS has one DO ... LOOP construction nested within
another. This brings us to the second nesting rule:

RULE 9: WHEN NESTING STRUCTURES IN FORTI, YOU MUST
NEST EACH STRUCTURE COMPLETELY WITHIN ANY
OUTER STRUCTURE.

For example, you may not use IF to branch into or out of a loop or another
conditional, Soine examples of nesting are given in TFigure 3.

Another example of nesting is provided by a different definition of EVEN
(Section 4.5). This EVEN performs as the first did but in addition assures
that the limit is not wero:

: EVEN -PUP IF 0NDO 1. 2 HLOOP TIEN ;

where:

miceroFORT'H PRIMFER

Page 47
: EVEN
-DUP IF Cheeks for a non-zero limit.
0 DO
I. Prints the ecven index value.
2 1LO0ODP Inerements the loop counter by two,
TIIEN ;

The complexity of the actions taken on either branch of an IF ... ELSE ...
THEN or within a DO ... LOOP structure is virtually unlimited. Tor
example, a complete IF ... BLSU ... THEN structure inay be used within an
IF branch as in this definition of NEXT , which stores a number into the next

empty onc of three locations, given the number and the first address on the
stack:

: NEXT
DUP @ Fetches the contents of the first
location.
17 Tests it for zero.
1+ DU @ Fetehes the contents of the next
location.
I Tests for zero.
1+ Inerements to the last location.
THEN
THEN
1
L |

Stores the number in the first,
second, or third loeation.

Ilcre we have nested one IF ... TIIEN structure entirely within another. This
conforms to Rule 9 given above: when nesting structures in FORTH, you must
nest each structure completely within any outer structure.

EXERCISES

1. How would you define MAX , MIN , and ABS ? (All are
supplied as part of standard microFORTIL.)

2. Define TACTORIAL to compute the factorial of & number.

microFORTH PRIMER Page 48

4.7 RECAPITULATION

The words 1F .., ELSE .., TIIEN, DO ... LOOP , BEGIN .., END , and DO

. *LOOTP are all compiling words, That is, they direet the eompiler to build
branches within a definition, which will later cause the interpreter to re-execute
or skip over words in the definition when the defined word is aetually invoked.
It is the function of these words to place items in a definition; therefore you
must conform to Rule 6: compiling words must never be used outside a
definition.

The least that can happen by ignoring this rule is that trash will be left at the
top of the dictionary or stack. 7The worst is that trash may be deposited into
existing definitions, making them unusable,

Page 51

HUN 03u0] ajoway AL

43141y
TOYLNOD
NIYD _ll

FHAZHN fm——] HLE04

. S i §—— @303 l.gw/

JINOSYELIN

) LY
" le——— yingeos ///

=04l 1K
HaNNL I|V

JHA

miecroFORTH PRIMER

v

micrcFORTH PRIMER August 1978 Page 53

remove the copied value from the stack, leaving that value on the stack for
further processing.

Thus we have the following definition for INPUT :
: INPUT BEGIN READ -DUP END

We can simulate the behavior of READ by defining a variable to contain a
value from a hypothetical paddle and a dummy READ to feteh it:

¢ CVARIABLI PADDLE
: READ PADDLE Ca@ ;

Edit these definitions { PADDLI and READ) into a screen; ecach must be
defined before it is used. Although we have designed this program in a
"top-down' fashion (overall control first, inercasing levels of detail later), it must
be loaded and tested in a "bottom-up" order. Usc a separate sercen for stubs
and dummy definitions; it ¢an be rcplaced by the "real” screen later with
minimum impact on the application.

Given that these routines have been loaded, we can now begin testing:

1 PADDLE C!

READ . 1 OK READ produces a correct result,
INPUT . 1 OK INPUT also works,

At this point we must test the valuc rceceived to decide whether channel
selection or volume control is indicated, We will adopt the convention that a
number < 14 indicates a channel, whereas other codes will be reserved for
various other funetions, such as volume. The phrase:

pup Saves a copy of the input.

13 > Compares it with thirteen,

IF ANALOG Performs the analog funection if > 13,
ELSE DIGITAL Performs the digital function otherwise,
THEN

will perform this decision. Tlere we have projected the words ANALOG and
DIGITAL to handle the two cases. Note that we have saved the value on the
stack prior to the test, so that it will serve as thc parameter to ANALOG or
DIGITAL .

Now our definition of PROCESS is:
: PROCESS DUP 13 > 1Y ANALOG ELSE DIGITAI: ‘THEN ;

As with READ , we'd like to defer actual coding of ANALOG and DIGITAL ,
so we replace them with stubs whose primary purpose is to verify which path
was taken. We'll do this by having ANALOG identify itself by printing a zero
followed by its value, with DIGITAL printing a one followed by the value. We
print the value not only to confirmm that it is there, but also because ANALOG
and DIGITAL will use (destroy) the value. This is an indirect way of
demonstrating an important rule about stubs:

RULIL 11: A STUB MUST REPRODUCE TIE BEHAVIOR OF ITS
INTENDED COUNTERPART W1TH RESPECT TO STACK
USAGI.

microlORTII PRIMER Page 55

Definition of TV in Screens

951
0 (TV CONTROL PADDLE) FORGET TASK : TASK
1 (TESTING STUBS) 952 LOAD
2 (ACTUAI, ROUTINES ‘10O 13 PUT IN SCREEN 953)
3
4 INPUT BEGIN READ -DUP END ;

5

6 PROCESS DUP 13 . IF ANALOG
7 ELSE DIGITAI, TIEN ;

8

9 IDLE BEGIN READ NOT END ;
10

11 TV BEGIN INPUT PROCESS IDLE 0 END ;
12

13

14

15

952
0 (TESTING STUBS FOR TV PADDLE 1/0)
1
2 0 CVARIABL)YE PADDLE
3
4 READ PANDLE CQ ;

5
6
?
8
9
10
11
12
13

microFORTII PRIMER Page 56

programs for mieroprocessors. Although the actual application (in this case, a TV
tuner) may be well understood, the details of how the input/output ports work
may not yet be settled. The software writer can have work underway while the
hardware designer finishes work because in mieroFORIII it is easy to replace a
stub by a whole definition at a later time.

A set of serceens that include the component testing definitions of TV is shown
in Figure 5. You now know enough to understand how this program works if you
spend a small amount of time studying it.

6.0 ASSEMBLER FEATURES

FORTH, by design, is a programming language that allows you, the programiner,
to concentrate on what the job is, not on how it is to be done on a particular
computer. This independence from unnecessary detail is one of FORTH's most
powerful features. There are times, however, when you must deseend into the
native language of your mieroprocessor.

In gencral, you should count on writing very little assembly language code under
mieroFORTH. ‘There are, however, two kinds of needs that arve best fulfilled by
using assembly code. Tirst, on many computers, when you have designed a
unigue hardware/software interface, you may have to write a short code
sequence to cominunicate with your deviee. Second, there arc ogccasions when
speced is more important than the compaet programs that FORTH naturally
provides. In either of these cases, assembly language is a powerful tool.

6.1 CODE DEFINITIONS

Like the compiler, the assembler adds definitions to the dietionary but with the
difference that the assembler uses the defining word CODIE . The word CODE
sets the inner interpreter to the ASSEMBI.ER vocabulary. A major difference
between the compiler and the assembler is that the assembler remains in exccute
mode and never changes to compile mode, Therefore, parameters for
instruetions are placed on the stack during the assembly process.

The CODLE definition construet looks like:

CODE name {machine instruections) NEXT JMP or NEXT

where:
CODE Enters the ASSEMBLER vocabulary and adds the
following "name" to the dictionary.
name Names (labels) the CODE definition.
{machine code) Provides instruections for the microprocessor.
NEXT JMP Returns to the inner interpreter. (This is a
or NEXT CODE ending only.)

In its most primitive form, mieroFORTII assembly language consists of nothing
more than a sequence of machine instructions in numerical form, Tirst these
numbers ave placed on the stack. Then two special words (C, and ,) remove
a number from the stack and enter it into the dictionary as either a single byte
(C,) or abyte pair (,). When the CODE word is invoked by name, such
numbers arc executed as object code for your proeessor.

10.

11.

APPENDIX A. SUMMARY OI FORTH RULES

FORTIl WORDS ARE MADE UP OF AN ARBITRARY NUMBER OF
CHARACTERS, SEPARATED BY SPACES.

MOST WORDS REQUIRE PARAMETERS ON A PUSH-DOWN
STACK.

ANY ERROR MESSAGE EMPTIES BOTII STACKS.

ALL, PARAMETERS PUT ONTO A STACK MUST BE REMOVED
WHEN THEY ARE NO LONGER NEEDED. THE ORDER WILL
BE LAST IN, FIRST QUT.

ALL WORDS MUST BE DEFINED BEFORE THEY CAN BE USED.

COMPILING WORDS MUST NEVER BE USED OUTSIDE A
DERFINITION,

EVERY II¥ MUST BE FOLLOWED BY A THEN .

ANYTHING PUSHED ONTO TIIE RETURN STACK MUST BE
REMOVED WITIIIN THE SAMF DEFINITION,

WHEN NESTING STRUCTURES IN FORTH, YOU MUST NEST
EACH STRUCTURE COMPLETELY WITHIN ANY OUTER
STRUCTURE.

NEVER PUT AN UNTESTED ROUTINE INTO A LOGP.

A STUB MUST REPRODUCE THE BEHAVIOR OF ITS INTENDED
COUNTERPART WITH RESPECT TO STACK USAGE.

APPENDIX B. microPORTH GLOSSARY

This glossary includes all words, definitions, and screen assignments that are
common to all CPUs. Because of the flexibility of the FORTH langunge,
however, you may find a few exceptions on your diskette. These will have becn
caused by our programmers' making improvements to the mierolFORTII system
you have rceeived.

Within this glossary therc are nlso a few words whose exact behavior varies from
chip to chip because the implementation of cach is machine dependent. ‘The end
behavior of these words, however, is the same on all machines; the most obvious
variations of implementation occur in M#* and M/MOD . They are used by
/ /MOD #/MOD and MOD . Do not use M and M/MOD unless
you understand exactly how these words modify the staeck pointer on your
particular CPU. Usc *f /MOD */MOD and MOD to perforin the
appropriate arithmetic.

Because they are CPU-dependent, no ASSEMBLER, CROSS-COMPILER, or
RECONFIGURE words are given in this glossary. The microFORTH Technical

Manual gives specifics of these three application voecabularies by chip type, while
the Development System Documentation that you rceeived with your system
contains information about any additions or other changes.

Short glossaries for the mieroFORTH vocebularics that pertain only to Options
(such as Extended-Precision Math or File Management) are provided with the
options when the number of words warrants it.

The order followed here is that of the ASCII character codes.

FORTII, Inc. 20 August 1978 Page 1
MICROFORTH GLOSSARY
WORD VOCABULARY SCREEN STACK: IN OQUT

! FORTII 0 2 0
Stores the second number on the stack into the address whieh
is on the top of the stack. TFor example, if VALUE is a
VARIABLE , then 32767 VALUL ! c¢hanges VALUE to 32767.

i EDT'TOR 14 0 0
Used to enter a line of text into PAD; the texti is
terminated by the delimiter "
Usage: "OPEXTY 11
This example inserts TEXT in Line 2 of the current sercen,

ft FORTII L2 1 1
Converts the lecast significant digit of a 16-bit binary number
to its ASCII equivalent using the current BASE. The ASCII
character is placed in the output string.

> FORTIY 12 1 2
Terminates the pietured numerie output, lecaving the byte count

of the string on top of the stack and its address beneath
for TYPE

#LEFT EDITOR 21 0 1
Computes the number of characters rvemnaining in the source
text line.

#S FORTII 12 1 1
Converts any remaining digits of a 16-bit binary number on the
stack to their ABCII equivalents, using the current BASIE,
The ASCI1 characters are placed in the output string. At
lcast onc digit will be converted if the number is zero.

' FoRTH 11 0 1
Places the address of the parameter field of the next word in
the current input stream onto the top of the stack.
Searches [irst the CONTEXT vocabulary, then the CURRENT
vocabulary, before giving an error message.

'S FORTH 10 0 1
Places the address of the top of the stack on the staeck,
i.e., the address of the top of the stack before 'S was
invoked.

(FORTH 3 00
Begins a comment, which is terminated by } . Comments are
ignored by the system and may appear inside or outside a
definition. They may not, however, cross an ecven line
boundary in source lexi sercens.

(.) FORTH 12 1 2
Converts a sixtecen-bit signed number on lop of the stack to
its ASCLI equivalent, leaving the byte count of the string
ou the top of the stack and its address benecath for TYPE
Used by . {i.e., dot}.

FORTH, Ine, 20 Augusti 1978 Page 2
MICROFORTH GLOSSARY
WORD VOCABULARY SCREEN STACK: IN OQUT

{MARK) FORTH 9 1 0
Compiles a baeckward jump in a logical structure.

(MATCH) FORTH 29 4 2
Usage: string-A count string-B count (MATCI)
Counts must bDe <256. Scarches for the 1st occurrence of A in
B, Returns the end byte plus 1 of the matched string in B
and a truth value: zero if no mateh and non-zcro if matcech.

(MATCII) ID1ITOR 22 4 2
In the EDITOR voecabulary on COSMACs only. Behaves like the
FORTH voeabulary (MATCII)

(MOVE) FORTII 22 3 0
Only exists on 6800s and COSMACs; in the EDI'IOR vocabulary on
COSMACs. BSame as MOVE except therc is an intermediate
move to HERE

(NUMBER) FORTH 10 1 2
Same as NUMBER except that the ASCII string may begin with a
minus sign, Also, if the terminating character is not a
space, (NUMBER) will exit with an ervor messagc. The top
of the stack is either the terminator or garbage.

(TIIEN) FORTH 9 1 0
Completes a forward jump in a logical structure.

* FORTH 5 2 1
Performs an unsigned multiply of thc low-order bytc of the top
number on the stack with the sixteen-bit number beneath it,
leaving a sixteen-bit product.

*/ FORTH 5 3 1
Multiplies the second and third numbers on the staek, then
divides by the top number, leaving the quoticent on top
of the stack. This is an unsigned operation with a
twenty-three-bit intermediate result,

* /MOD FORTH 5 3 2
Multiplies the second and third numbers on the staek, then
divides by the top number, leaving the quoticent on top of
the staek and the remainder bencath, This is an unsigned
operation with a twenty-three-bit intermediate result,

+ FORTIU ¢ 2 1
Replaces the two numbers on the stack by their sum,

4! IF'ORTH 0 2 0
Inerements the sixteen—-bit word whose address is on the top of
the stack by the amount in the sceond word of the stack.

+LO0Y FORTII 0 1 0
Terminates the range of a DO ..., LOOP. Increments the index
by an unsigned sixteen-bit number on top of the stack,
removing the number. The loop is terminated if the new
index equals or exceeds the limit (unsigned comparc).

FORTH, Inc.

WORD

+LOOP

~DUP

~MOVE

~TRATIL (NG

At

/MOD

0 <

20 August 1978 Page 3
MICROFORTH GLOSSARY
YOCABULARY SCREEN STACK: IN OUT

FFORTH 9 1]
Defines the compile-time behavior of +LOQP

FORTII 0 1]
Places the sixteen-bit value on top of the stack into the next
dietionary position (at HERE) and advances H by two.

FOR'TII 0 2 1
Subtracts the top stack item from the second stack item,
leaving the difference on the stack.

FORTIL 0 0 2
Returng a nonzero valuc if the next word in the current input
stream esnnot be found in the dictionary, and 0 if it can
be found, If the word is found, the second item on the
stock is the address of the word's parvameter ficld.

FORTH 3 1 2
Reproduces the top of the stack only if it is non-zero,

FORTIL 22 3 0

Same as MOVE excepl that the count must be less than 256 and
the bloeck of memory is moved in reversc order, beginning at
its highest address., (8080s and 280s only.)}

FORTII 13 2 2
Reduces the byte count on the top of the stack by the number
of trailing blanks found in the string whose address is the
second item on the stack.

FORTH 12 1 0
Qutputs a signed sixteen-bit number from the top of the stack.

FORTII 13 2 0
Ouipuis the second number on the stack, vight-adjusted in a
field whose width is specified on the top of the staek.

FORTH 5 2 1
Unsigned division of the second word (full sixteen bits) of

the stack by the top (max value 128), leaving ithe quotient
on the top of the stack.

VORTII 5 2 2

Performs an unsigned division of the second stack item by the
first, leaving a quotient on the top of the stack and a
remainder beneath.

FORTI 0 1 1
If the top stack iiem is less then zero, replaces it with
onci leaves zero otherwise.

FORTH 0 1]
[f the top stack item equals zero, replaces it with onces
lecaves zero otherwise.,

FORTH, Inec.

WORD

1+

1I,INE

2k

g%

s CODE

; CODE

<#

<BU1LDS

20 August 1978 Page 4
MICROFORTH GLOSSARY
VOCABULARY SCREEN STACK: IN oUT

FORTH 0 1 I
Adds onc to the top stack item,

EDITOR 21 0 1
Given a string in PAD, searches for the string in the current
line. Leaves zero if the string is not found and one if it
is. T.eaves the cursor positioned at the end of the matched
string or at the end of tine if not found.

FORTII 0 1 t
Doubles the value of the top item on the stack.

FORTIT 0 1 1
Adds two to the top staek item,

FORTH 3 1 1
Multiplies the top valuc on the stack by cight.

YORTH 0 0 0
Creates a dictionary entry for the word following : . Puts
the interpreter into compile mode.

FORTH 0 0 0
Terminates a : definition. Toggles the user variable
STATE

FORTH 4 0 0
Ends the creation portion of a new defining word and begins
the code portion {run-time behavior) of it.

FORTH 0 0 0
When cxecuted, scts the code address of the new wod to point
to the code that follows ;CODE

FORTH 0 0 0
Ends the loading of any sereen in which ;8 is executed.
Within a definition causes an exit to the next outer
definition.

FOR'FI1 0 2 1
1f the second staek item is less than the top, replaccs the
top two items on the stack with one, #cro otherwise.
This is a limited signed compare. liqguivalent to - 0 <.

TFORTH 12 0 0
Begins picturced numeric output. Sets IILD to PAD,
sixteen-bit binary number must be on the stack.

FORTH 3 0 0
Begins the compile-time behavior of a new "high-level"
defining word., Defined as 0 CONSTANT ; used with DOES >.

FORTIL, Inec.

WORD

<R

?8TACK

ARS

AND

ASSEMBILE

ASSEMBLER

AT

20 Aupgusti 18Y8 Page &
MICROFORTII GLOSSARY
VOCABULARY SCREEN 5'CACK: IN QU

FORTH 0 1 0
Removes the top item on the parameter stack and places il on
the top of the return stack.

FORTH 0 2 1
If the top two stack items are equal, veplaces them with one;
leaves zero otheorwise.

roRr'Til 5 2 1

If the second item on the stack is grcater that the top item,
replaces both with one; leaves zero otherwise. This is
a limited signed compare. Equivalent to SWAP - 0<.

FORTILL 12 1 0
Outputs the contents of the word address which is on the top
of the staeck. Tquivalent to @ . (dot).

TFORTII 10 0 0
Cheeks for stack underflow and overflow and issues an errvor
message if appropriate.

FORTH 0 1 1
Replaces the address on the top of the stack by the contents
of the two-byte word at that location.

EDITOR 14 1 0

In the current secercen, adds the line of text that follows A
ATTER the lince number given. Line 15 is lost. The added
line remainsg in PAD.

FORTIIL H] 1 1
Replaces the top stack item with its absolute value,

FORTII 0 2 1
Performs the logical sixtecen-bit AND operation on the top
iwo staek iftems,

FORTH 9 0 1
For COSMACs only, a constant which gives the load screcn of
the ASSIEMBLER voecabulary.

FORTII 0 0 0
Bets CONTEXT to the ASSEMBLER vocabularvy,

EDITOR 21 1 1
Calculates the physical address in memory of the current
cursor position within the current sercen,

EDITOR 21 0 0
Positions the cursor in front of the string just found. Used
in conjunetion with I

FORTH, [ne.

WORD

BACKUP

BASH

BEGIN

BLANK

BLK

BLOCK

BUFFER

CH

20 Augusti 1978 Page 6
M1CROFORTII GILOSSARY
VOCABULARY SCREEN STACK: TN our

DISKI1NG 24 0 0
Copics an entive diskette from Drive 0 to Drive 1.

FORTH 0 0 1

A uscr variable that contains the radix for number conversions
on input or output. 1t is onc byte long and is used with
Ca and C!

FORTH) 0 1
Marks the beginning of an indefinite loop which is terminated
by ¥ND . Leaves ils address on the staek.

FORTH 22 2 0
Given an address in the seccond stack position and the byte
count (<256) on top, stores blanks into that region of
memory. Also in the FDITOR vocabulary.

FORTH 0 0 1
A user variable that contains the number of the blook
being interpreted during a TOAD . [If BIK contains zero,

input is from the terminal, Overlaps the user variable
IN

FORTH 3 1 1
Replaces the block number on the top of the stack by the
starting address of its bloek buffer in memory, adding in
OFFSET

FORTH 0 0 1
Returns the address of the bloek ID of a free bloek buffer.
The ID resides two bytes before the beginning of the block
buffer,

EDITOR 21 0 0

Inserts the string that follows C into the current line,
beginning at the currcnt cursor position. Extra characters
(at the cnd of the line) will be lost.

FORTII 0 2 0
Stores the eight-bit value in the low-order bytc of the sccond
item on the stack into the address on the top of the stack.

EDITOR 21 0 1
Calculates the character position of the cursor in the
curtent line,

FORTH 0 1 0
Places the low-order byte of the top of the stack into the
next dietionary position at HFRE and advances H by one.

FORTH 0 1 1
Replaces the address on the top of the stack with its con-
tents, The high-order byte is zero filled.

FORTII, Ine.

WORD

CODKE

COMPILE

CONSTANT

CONTEXT

COPY

COUN'T

CR

CREATE

CROSS

CURRENT

CVARTABILE

C7

20 August 1878 Page 7
MICROFORTH GILOSSARY
VOCABULARY SCREEN STACK: TN OUT

IFORTI1 4 0 0
Begins a dictionary cntry for the word following it and enters
the ASSEMBILER vocabulary.

FORTI 0 0 0
Changes the user variable STATE ; used by : and
(Changes the name field in the dietionary entrvy. The byte
changed is machine-dependent.)

ITORTI 0 1 0
A defining word which crcates a dietionary entrvy for a
sixteen-bit veluc. When the nawmnc is invoked, the value is
placed on the top of the stack.

FORTII 0 0 1
A uscr variable whose contenis point to the vocabulary in
which scearches begin.

IDITOR 14 2 0
Copies one screcen to another. The source sercen is
unchanged. Usage: source-screen destination-scereen COPY

FORTIL 15 1 2
Takes the address of a character string whose fivst byte is a
charaeter count and replaces it with a character count on
top of the stack and the address of the first character
beneath. In Sereen 16 on OOSMACSs,

FORTH 12 0 0
Sends a carriage return and line feed to the terminal,

FORTH 0 0 ¢
When executed, creates a dictionary header for the word that
follows it. Used in the definition of all defining words.

FORTH 19 0 1
A CONSTANT that places the load sercen number of the cross-
compiler on the top of the stack.

FORTH 0 0 1
A user variable whose contents point to the vocabulary in
which new definitions are added. The CURRENT vocabulary
is searched when the search of the CONTEXT vocabulary
ends,

FORTH 4 1 0

A defining word which creates a dictionary entry for an
eight-bit valuc. When the CVARIABLE name is invoked, the
address of the value is placed on the top of the stack.

FORTH 0 0 1
Places one byte of zcro on the stack., Inerements (he stack
pointer by one byte.

FORTH, Inc.
WORD

D

DECIMAL

DEFINITIONS

DELETE

DEVICE

DI1BKING

DOES >

DOWN

DRO

DR1

DROP

20 August 1978 Page 8
MICROTORTII GFOSSARY
VOCABULARY SCREEN STACK: 1IN QU

EDITOR 14 1 0

In the current screen, deletes the line specified on the top
of the stack and places it in PAD. Succceding lines arec
moved up; linec 15 is duplicated.

I'ORTII 5 0 0
Sets BASE 1o radix ten for number conversion.,

FORTH i1 0 0
Scels CURRENT to CONTEXT. Used to specify the vocabulary in
which definitions will be entered.

EDITOR 14] 0

Stores zero into the first two bytes of the specified sereen
to mark the sereen as unuscd. This screen then will not be
listed by INDEX , SHOW , or TRIAD in the PRINTING
utility.

PRINTER 17 0 0
Marks the load point for the PRINTER vocabulary. (Not avail-
able on COSMACs.)

FORTH 19 0 1
A CONSTANT that gives the load sercen number of the DISKING
utility,
FORTUH 9 0 0

Defines the compile-time behavior of DO

FORTH 0 2 0

Begins a finite loop whose index (the top stack item) and
limit (the second staek item) are moved to the return stack
when it is invoked.

FORTH 0 0 0
A defining word which marks the beginning of the run-time
portion of a new defining word, Used with <BUILDS

DISKING 24 2 0
Bee RIGHT

FORTH 19 0 1]
Sets the user variable OPFIFSET to zero for absolute access
by BLOCK and LIST

FOR'TIL 19 0 0
Sets the user variable OFFSET to 2000 for relative access to
Drive 1 by BLOCK and LIST

FORTH 0 1 0
Removes the top item from the stack.

FORTH, Ine, 20 August 1978 Page 9
MICROVORTH GILOSSARY
WORD VOCABULARY SCREEN S'VACK: IN OU7T

DuMpP FORTII 13 2 0
Outputs the values contained in a spceificd region of tnemory.
Usage: start-addr count numpe

bup FORTII 0 1 2
Duplicates the top of the stack.

RCHO FORTH 15 1 0
Bends the chavaeter in the low-order byte of the top stack
itom to the terminal,

ECIIO PRINTER 1% | 0
Bends the ceharaeter in the low-order byte of the top stack
jtem to the printer deviee. (Not available on COSMACs.)

EDIT IFORTH 19 0 1
A constant thai is the load sereen number of the EDRDITOR
vocabulary. [For COSMACs only.

EDITOR FORTH 14 0 0
Bets CONTEXT to the EDITOR vocabulary. 1t is IMMEDIATE
so that it may be invoked inside a definition.

ELSI TFORTH 0 1 1
Usced within the 1IF ..., THEN structure, LLSE begins the
"false" part. The words that follow ELSE are cxecuted
if the top stack item was zevo (false) when II' was
invoked.

ELSE FORTH 0 0 0
Defines the compile-time behavior of ELSE

END FORITY 0 1]
Terminates an indefiniic loop started with BEGIN . Returns
to the start of the loop if the top stack item is zero
(false); terminates the loop if the top stack item is
non-zero (true). (Not available on 6800s.)

END FORTH 9 0 0
Defines the compile-time behavior of END

ERASTE FORT1I 4 2 0
Given the byte couni on top of the stack and the address
beneath, stores zcros in a region of memory.
Usage: start-adr, count HRASE

ERASEK-CORE IFORTH 3 0 0
Stores uzeros in ali the bloek buffers. Does not write to disk
any bloek buifers marked for writing.

LRI EDITTOR 21 1 0
Uses the error condition code on top of the staek; if truc,
moves fext from PAD to IERS and invokes 0 QUESTION

I'ORTI1, Inec.

WORD

ERROR

EXECUTE

BXPLECT

17

FILL

IFIND

FLUSH

EMT

FORGET

IFORTH

GAP

Il

20 August 1978 Page 10
MICROFORTIT CGIOSHBARY
VOCABUTLARY SCREEN STACK: 1IN OUT

DISKING 26 0 1
Leaves the valuc of S8TATUS masked for error hits,

IFORTH 0 1 0
Lxecutes thce word whose parametcer {ield address is on top
of the stack,.

FOR'IH 16 2 0

Inputs, from the terminal, the number of characters speecificd
on top of the stack and places them into memory at the
address given beneath, followed by 2 nulls., “The string is
cnded when the count is cxhausted or by a carriage rveturn,

EDITOR 21 0 0
Beginning at the current cursor position in the current
screen, searches for the string that follows 1 and lcaves
the cursor positioned immediately after that string.
Multiple lines arc searched,

DISKING 24 0 0

Sets a non-zcro value into the bloek IDs of the disk block
buffers. Used to force the operating sysiem to read disk
Bloek 0 from disk.

EDITOR 21 0 0
Scarches each line of the current scercen, beginning at the
ceurrent cursor position for the string in PAD . Prints

an error message if the string is not found.

FORTH 3 0 0
Forces all updated blocks to be written to disk.

DISKING 24] 0
Formats the disk on Drive 1 (where appropriatce).

FORTH 11 0 0

Physically forgets, at execute time, all dictionary cntries
after and including the word specificd in the current
input stream.

FORTH 11 0 0
The name of the innermost vocabulary., Scts CONTEXT to
FORTH . It is IMMEDIATE so that it may be invoked
inside a definition,

EDITOR 14 1 1
In the current screen, pushes all lines that ocecur APTER
the speccified line down one.

FORTH 0 0 1
A user variable that contains the address of the top of the
dictionary. Sec HERE

FORTI, Ine.

WORD

IN-LINE

INC

INDEX

INTERPRET

KLY

I

LEAVE

LEFT

LE

LINE

20 August 1978 Page 12
MICROFORTH GIOSSARY
VOCABUELARY SCREEN STACK: IN QU7

FORTH 0 0 1
Puts a sixteen-bit literal on the stack at run {ime.

DISKING 24 0 1
A constant that gives the bloek inerement for RIGHT and
SWEEP . Must be an odd number.

PRINTING 27 2 0
Types the first line of cach screen in the range given, sixty
lines to a page. The copyright and heading arc at the
base of each page.
Usage: start-sercenft end-scrcenft INDEX

FFORTII 0 0 0
Outer interprcter loop; scans and scarches for a word (to be
compiled or excecuted, depending on STATE and prcecdence)
in the dicetionary. If not found, converts number and com-
iles literal form if in compile mode.

FORTH 4 0 1

Puts the index of thc outer of two nested DO ... IOOPS on
the stack. Only the indieces of the two innermost nested
loops are available. In Sercen 5 on COSMACSs.

FOR'TII 16 0 1
Reeeives and places on the staek a single charaeter {rom the
keyboard. In Sereen 15 on COSMACs.

FORTH 13 0 0
Lists the screen specified in the user variable SCR.

EDITOR 21 0 1
Catlculates the line number of the ecursor in the ecurrent
sercen. Implementation is immachine-dependent.

FORTH 4 0 0

Sets the limit of a DO .., LOOP cqual to zecro so that a loop
will be terminated. Implementation is machine-dependent.

In Sereen 5 on COSMACs .,

DISKING Zz4 2 0
See RIGHT

PRINTING 27 0 0]
Sends one line fecd.

EDITOR 14 1 2
Given the number of a line in the current sereen on the top of
the stack, returns a character count of sixty-four {on top)
and the address of the line beneath, The line number is
masked by fifteen.

FORTI, Ine. 20 August 1978 Page 14
MICROFORTII GIOSHARY

WORD VOCABULARY SCREEN STACK: IN QUT
MESHBAGE PRINTIER 14 1 0
Same as MESSAGE in the FORTH vocabulary. (Not available on
COBMACs .
MIN FORTH 5 2 1

A limited signed compare between the top two values on the
stock that leaves fhe smaller value on the stacl,

MINUS FORTH 0 1 1
Replaces the top of the stack by its two's comploment,

MOD FORTII 5 2 1
Divides the top staek item into the value bencath it, leaving
the remainder on the top of the stack.

MOVE FOR1TI 0 3 0
Moves a speeified region of memory to another region of
metnory; moves the locations with lower addresses first,
The source area remains unchanged.
Usage: sourec-addr. dest.-addr., byte-count MOVE

MSG FORTH 15 0 {
Defines a word that will type out the stiring that follows it
in the dietionary. The string is preccded by a character

count. In Sercen 16 on COSMACs.

M&G PRINTER 17 0]
Sets ASCII character codes into a named definition in the
dictionary. {(Not availablc on COSMACs.)

N EDITOR 21 0 0
Finds the next occurrence of a string (found with an ¥)
in the current sercen.

NI DISKING 24 0 1
A constant that gives the number of bloeck buffers.

NEW DISKING 24 0 1
A constant that pgives the first block number on Drive 1,

NOT FORTIL 5]
Reverses the truth value of the top of the stack.
Identical to 0=

NOTIFY DISKING 26 1 1
Erases the bloek ID in the buffer whose address is on top of
the stack after first feteching the bloeck number contained
in the ID. Invokes TLOG with the bloek number and returns
the number less the contentls of OFFSET 1o the stock.

NUMBLER FORTII 0 1 2
Given the starting address less 1 of a numerie ASCII string on
the stack, converts the string to binary aceording to the
current value of DBASYK and leaves it in ihe sccond staek
entry. The top item points Lo the non—-numerie terminator.

FORTH, Ine. 20 August 1978 Pagce 16
MICROFORTH GILOSSARY
WORD VOCABULARY SCREEN STACK: IN OuUT

R! FORTII 16 1 0
Moves the contents of Register U 1o Register R {i.c¢c., resctls
the return stack). On COSMACs only.

Rit FOR'11I 13 0 i
User variable which contains the chavacter position of the
cursor in the EDITOR. When file management is in the
system Rft is the rceord number of the currently aceesscd
record.

R > FORTH]] 1
Remwoves the top of the return stack and places it on the
parameter stack.

RIMOVE EDITOR 21 1 0
Given the character position of the beginning of the string
to be deleted, delctes those chavacters on the line (up to
the current cursor position) and moves all characicrs up.
Trailing blanks are added at the end as nceded.

RIGIIT DISKING 24 2 0
Copies the range of sercen given from Drive 0 to Drive 1,
Usage: start-serecenff end-sercenfi-plus--1 RIGIT
May be called UP , DOWN , or LEFT

ROT FORTH 0 3 3
Rotates the top three stack items, putting the third stack
item on the top. On 6800s ROT resides in Sercen §.

5! FORTH 10 1 0
Sets the address of the current stack pointer to the one given
on the stack.

50 FORTH 0 0 1
A user VARIADBLE that contains the address of the bottom of
the paramcter stack and the start of the input message

buffer.
SCR FORTH 13 0 1
A uscer variable that holds the current ¥DITOR screen nwnber,
SHOW PRINTING 27 2 0
Types TRIADs of sereens in the inelusive range given,
Usage: start-screen end-screen SITOW
5 IGN FORTII 12 2 1

Places a minus sign in the pietured numeric output string if
the second word on the stack is negative. Deletes this
second word on the stack but retains the top word.

BPACKE FORTH 12 0 0
Sends a single space (blank) to the terminal.

FORTH, Ine. 20 August 1978 Page 18
MICROFORTH GLOSSARY
WORD VOCABULARY SCREEN STACK: [N QUT

TRIAD PRINTING 27 1 0
Types a set of three scercens, given one scrcen number. The
screcn number may be any of the three scereens on a page;
the top screen is always the sereen number modulo
three. Copyright and hcading appcar at page bottiom.

TYPFE FOR'TH 15 2 ¢
Uses a character count on top of the stack and an address
beneath to send characters to the terminal, May 7TYPR
zero characters. In Sercen 16 on COSMACS.

TYPE PRINTER LY 2 0
Uses a character count on top of the stack and an address
beneath to send eharacters to the printer device.
(Not available on COSMACs.)

U FORTH 4 0 1
A constant that gives the address of the pointer to the start
of the uscr arca. For COSMACs, in ASSEMBLER voeabulary.

U= FORTH 0 2 L
Unsigned multiply of the low-order bytes of the top two words
on the stacek, leaving a sixtcen~bil product,

U/ FORTH 0 2 2
Unsigned divide of the second word on the stack by the top
word, lcaving a quotient on top and a remainder beneath.

up DISKING 24 2 0
See RIGHT

UPDATE FORTH 0] 0
Marks the lasi buffer returned by BROCK for writing. ‘The
bloek is rewritten on the disk either by the next VLUSH
or automatieally when the buffer is needed for another
bloek,

USER [FORTII 0 i 0
A defining word, used to name locations at fixed relative
addresses within the user areca.

VARTABLE FORTII 4 1 0
A defining word that creates a dictionary entry for a
sixteen-bit value. When the VARIABLE name is invokod,
the address of the value is placed on top of the
stack.

VOCABULARY FORTH 11 0 0
Defines a word whose parametcer field plus iwo points to the
most reecent entry of that vocabulavy's set of definitions,
Exceuting a vocabulary name points CONTEXT to ithat vocabu-
lary's pavameter ficld plus two.

FORTH, Inc.
WORD

WHILLE

WHIILE

WORD

(]

[BLOCK |

| swAp |

col

20 August 1978 Page 19
MICROFORTII GLOSSARY
VOCADBULARY BCREEN HTACK: IN OUT

FORTII 0 0 0
Terminates an indefinite loop of the following form:
BEGIN (condition) IF WHILE or BEGIN (condition) IIF ELSYX WHILE
Allows a test at the beginning of an indefinite loop.
(Not available on 6800s.)

FOLRTH 9] 0
Defines the compile-time behavior of WHILE

FORTII 0 1 0
Reads forward in the current input stream until the delimiter
given on the stack. The byte count and text arc stored at
HERE with the byte count in the first byte.

EDITOR 21 0 0
Beginning at the currvent cursor posifion, scarches for and
deictes the string that follows X . Multiple lines arve

scarched.

IFORTUH 13 0 0
Defines the run-time behavior of [, which types out text on
the CRT. The string resides in the dietionary, prceeded by
a count. It was laid down at compile time by use of {he
compiling word

'ORTH 13 0 0
A compiling word which causes the string of characters until
the delimiter], following it to be typed when the defined
word is invoked.

FORTH 0 0 1
PDuring compilation, pushes onto the stack the sixteen-bit
value that follows it,

FORTH 11 0 o .
Defines the compile-time behavior of L‘J

DISBKING 26 1 1
Invokes DBIOCK and, in case of vcad errors, rctries up to ten
times. Invokes LOG for all but the last vetry.

FORTH 11 1 1
A compiling word whieh swaps the top two words of the stack
during compilation,

FORTH 0 0 0

A compiling word that places the address of the word that
follows it into a new definition. Used to help define the
run-time and compile-time behavior of a compilor word.

FORTH 0 1] 0

An ALBCLT null chavacier thai terminates scoanning in the
cenrrent input stream. Null conirols the scquencing of
the bloek buficers of a sercen.

