
The contents of this document are the intellectual property of FORTH, Inc. and are protected by copyright. This document is provided free of
charge for personal, non-commercial, and academic uses. You may not redistribute this in any form without permission from FORTH, Inc.

microFORTH TECHNICAL MANUAL

FORTH, Inc.

815 Manhattan Avenue

Manhattan Beach, CA 90266

(213) 372- 8493

August 1978

Version 3

fo1· RCA COSMAC

Copyright 1976, 1978 by FORTH, Inc.

Version 3 (revised Appendices)
9 8 7 6 5 4 3 2 1

This book was produced by use of the textFORTH System.

FORTH and microFORTH are trademarks of FORTH, Inc.

All rights reserved. No part of this book may be reproduced in any form or by
any means, electronic 01· mechanical, including photocopying, recording, or by an
inf0t·mation retrieval system, without permission in writing from:

FORTH, Inc.

815 Manhattan Avenue

Manhattan I3each, CA 90266

TABLE Of CONTENTS

1.0 lNTRODUCTION 2

1 . 1 ElemcnLs of fi'OHTH ?.

1 • 1. 1 Dictionary 3

1 . 1. 2 Stack 3

1. 1.3 Code 4

1. 1. 11 lligh level definitions 4

1 . 1 • 5 Blocks ii

l.2 Keyboard Input 1· :.,

2.0 USE OF THE STACK 7

2. 1 Parameter Stc1ck 7

2.2 fleturn Stack 12

3.0 NUMBERS AND V/\Rl/lBLES 14

3. 1 Numbers 111

3.2 VAHJJ\BLEs nnd CONSTANTs 16

3.3 Arrnys 17

3. LI USER Variables 18

ii. O ARITHMETIC 1 9

5.0 COMPILER 23

5. 1 Literals 23

5,2 Logical now 21i

5,3 DO-LOOPs 24

5.3.1 l~xarnples of DO-LOOPs 25

5.ll flEGIN, .. END Loops 29

5.5 Conditionals 29

5.6 Special Loops 31

5. 6 .1 LEAVE 31

5.6.2 ~JHILE 33

5.7 Special Literals 311

5. '(. 1 Use of [t J 34

5.7.2 Use of IN-LINE 35

5.8 Extending the Compiler 35

5.9 1·'.P.mory Usage and Timing 37

1

microFORTH TECHNICAL MANUAi.

6,0 BLOCK I/0

6.1 Error Checking

'I. 0 TEXT EDl TOH

7,1 Text Editing Utility

'l.2 Program Listing Utility

7.2.1 Index listings

7.2,2 Program screen listings

8,0 OUTPUT

8.1 Right-Adjusting Numbers

8.2 Custom Number ~ormatting

8,3 Text Output

9,0 FORTH PROGRAMMING TECHNIQUES

9. 1 Overlays

9.2 Diagnostics

9.3 Testing

9,4 Top-Down Design

10.0 THE FORTH DICTIONARY STRUCTURE

11,0 THE INTERPRETER

11.1 Interpreting a String of Words Typed at the Terminal

11.2 Interpreting Source Blocks

11.3 Compiling Definitions

11.4 Executing Definitions

11.5 Inner Interpreter Control

12,0 THE ASSEMBLER

12,1 Code Endings

12.2 Notational Conventions

12.3 Macros

12.4 Example

12.5 Logical Structures

12.6 Device Handlers

12.7 Time and Memory Trade-Offs

13.0 SPECIAL DEFINING WORDS

13.1Useof

13. 1. 1 VF.CTOR

13, ·1.2 ARRAY

13.2 High-level Defining Words

38

110

lj 1

112

1111

Lill

45

46

46

118

50

52

52

56

58

63

63

6IJ

65

65

66

68

70

70

73

'{ 3

76

78

78

80

81

(31j

811

85

rnicrol"ORTIJ TECHNICAL MANUAL

1 II. 0 VOCABULARIES

15, 0 Tl!E: CROSS COMP IL.EH

15.1 Explanation of Terms

15.1,1 Cross Compiling

15. 1. 2 The Tar·gct System

15.1.3 The Host System

15. 1, 11 The Nucleus

1~.1.5 Defining vs Compiling

15,2 Organizing an Application to be Cross Compiled

16.0 THE CROSS COMPILER ENVIRONMENT

16.1 Colon Definitions

16.2 Defining Words

16.2,1 VARIABLE and CVARlABLE

16.2.2 TABLE

16.2.3 CONSTANT

16 .2 .11 USER

16.2,5 Code Definitions

16,2.6 EQU and LABEL

17.0 TllE CROSS COMPILlNG PROCESS

17.1 Procedure

17.2 The Cross Compiler Map

17.3 Core Image Output

17.4 Program Dumps

17.5 Relocating and Expanding the Target Dictionary

18,0 EXTENDING THE CROSS COMPILER

18.1 Defining Words

13.2 Compiling Words

19,0 A TYPICAL DEVELOPMENT CYCLE

19.1 Research and Design

19.2 Coding and Testing

19.3 Cross Compiling

19.4 Installation and Checkout

90

95

95

95

96

97

97

93

99

102

1011

105

105

107

108

108

109

111

113

11 3

11 Li

116

117

118

119

119

122

124

1211

124

126

127

Appendix A. microFORTII IMPLEMENTATION

ON THE RCA COSMAC

l. l DATA FORMAT

1.2 REGISTER ALLOCATION

1.3 ASSEMBLER MNEMONICS

1.3.1 Modifiers of Mnemonics

1.4 TRANSFERS

l.5 CODE BEGINNING WORDS

1.6 MACROS - EXTENDING THE ASSEMULER

1.7 USE OF THE ALLOCATED REGISTERS

1.8 INTERRUPT HANDLING

1.9 TIMING CHART

l. 10 USER AllEA MAP

A - 1

A - l

A - ?,

A - 2

A - 2

A .. 3

A - 4

A - 5

A - 5

A - 6

A - 8

PREFACE

Because of the i mpol'tance of the Technical Manual to progrnm mers, we are
revising it as quickly as possible and issuing the revised sections as they are
completed. When the revision is complete (in 1979), each microFORTII customer
will receive a copy; updates and/or errata sheets will be issued thereafter as
needed,

The second edition of the Primer and the Appendices in this mnnual (i.e., the
CPU-specific prose and both glossaries) reflect the most recent microFOH.'l'H
systems. The next item scheduled is an expansion of the CPU-specific glossary
to include the cross-compiler; you may request one to be sent at the time of
publication by writing to the Editor at FORTH, Inc.

In order to make reading our documentation as easy as possible, we at FORTH,
Inc. use the following conventions in manuals:

1. All FORTH words that appear in prose passages as examples of
commands a1·e enclosed by at least one extra space on each
side. Words defined as occasional examples are also set off.

2, In all examples that show stack usage, the top item of the
stack appears to the 1·ight (as il does on your terminal screen
when you are entering).

Additional conventions used in FORTH manuals are those that FORTH
prog1·ammers use to make source screens readable. The most basic ai·e:

1. Al though only one space is absolutely necessary between each
word of a definition, spacing three times after a new word that
is being defined sets off the major components.

2, Double spacing between phrases (logical clusters) of a
definition also helps make source text legible.

3. When a definition takes up more than one line, the following
lines begin with an indentation of three or more spnces to save
the left margin for woNls being defined.

For microFOH.TH users we publish three levels of documentation. The
m icroFOR TH Prim er covers the bl'Oadest and most basic aspects since it is
intended fo1· the newcomer to pl'Ograrn ming to work throuzh before com rnencing
study of the m icroFO RTH Technical Manual. The Prim er also serves as a
prospectus for experienced progrnm rners to !'Cad quickly in orde1• to spot
philosophical differences between FORTH and other high--level lang·uages nnd/or
operating systems.

The microFOR TH Technical Manual forms the second level of docurn entation. In
the four chip-specffic - versions (808 0, 6800, 1802, and Z80), implementation that
depends upon hardware is treated in more depth.

Besides the differences in chips, variations exist within each chip category for
particular development systems on which microFORTH has been produced. These
differences are documented in the listings and CPU-specific instructions that are
issued with each microFORTH system. When users report especially useful
solutions to problems that arise during initial use of microFORTH systems, we
share the information in these packets. The documentation of Options likewise
accompanies delivery of each particular optional program.

Since we want you to make the most of your microFORTH system, we have
developed a Hotline service, programming classes, and the FORTH, Inc.
Newsletter.

During regular business hours a programmer is available to help you with
suggestions about troubleshooting. Since all of our programmers work on-site
when necessary, at times there will be a slight delay before someone retums
your call. Try, therefore, to place your call as soon as you are sure you have a
problem.

Classes are held at FORTH, Inc. whenever the number of potential students
warrants one. Each microFORTH class features an overview and then the focus
turns to the specific needs of those who attend. If you would like to
participate in such a class, use the Hotline to add your name to the request
list for the next scheduling.

A new aid, the FOR TH, Inc. Newsletter (And So FORTH ..•), is being published
quarterly. Each customer receives two copies; each isstwf eatures articles on
programming. Since the content is intended to reflect user concerns, your
questions and suggested will be appreciated.

While you are reading any FORTI-I, Inc. manual, we hope you will make notes
about questions raised but not answc1·cd, passages that are not clear, and,
especially, any mis takes you may find. We include a "Reader Comment form"
with both the Primer and the Technical Manual to remind you that we need your
feedback in order that we may serve all our users well.

microFORTH Technical Manual Pae;e 2

1 . 0 JNTHODUC'l'ION

FORTH is a prograrn111ing technique originally designed for real--tirne inte1·active

minicomputer applications. In such an environment it offers several advantages: it

is interactive, it is compact (uses little memory), and it is very fast.

FORTH has been implemented on many minicomputers and has been used in lrnndreds of

minicomputer applications. This 1nanual docurnents FORTH as it has been modified for

use on 8-bit microprocessors for developing microprocessor applications which might

be cross-compiled for production. Such a development systern is presumed to have a

programmer's terminal and a mass storage device such as a floppy disk.

FOHTI! is a computer language. It is structurally quite different from other

languages, however. FORTH is an interactive system, in that it has no seRarate

co111pil er or assembler- -the r outin cs that gen era te and execute machine in st rue tions

are integral parts of a unified system which also includes a small, fast interpreter

and an executive whose characteristics may be 1nodified for a specific application.

FORTH has 5 main elements. Tal<e away any one and you have something that is not

useful. There is a synergistic effect among them that produces a remarkably

powerful combination. Many of the characteristics and capabilities of FORTH were a

surprise to us and some remain so!

111icroFORTII Technical Manual Page 3

1 .1.1 Dictionary

The key element, if one must. choose, is the dictionary. A FORTH program

is 90% dictionary. This, as implied by its name, is a collection of words

(or commands), together with their definitions. We are trying to explain

a problem to the computer and do this by explaining what each of a number

of words means. Thus it is a Man-to-Computer dictionary.

A collection of words is commonly called a vocabulary. The dictionary

defines a vocabulary for the computer, perhaps several distinct

vocabularies. Indeed, speaking of a FORTH progra~ is sloppy, for FORTH ..iJ!

the program.

An application coded in FORTH is better called a vocabulary. You use an

editing vocabulary to edit text, an observing vocabulary to observe an

experiment, etc. The vocabulary is just that: it is not a program since

it can't stand alone. It depends upon FORTH to do all the work and merely

describes what must be done.

Technically, the I•'ORTH dictionary may be described as a linked list of

entries of various kinds. The nature of the linking and the actual content

of the entries .i.s described in the chapter "The FORTH Dictionary

Structure."

Each defined word has an entry in the dictionary. FORTH provides the

mechanism for searching the dictionary, executing words, discarding words

and defining new words.

1. 1 .2 Stack

Another important and visible element of FORTH is its use of 11push-d01-m

stacks" for parameters. Most FORTH words represent operations; these find

their parameters on the stack; the addresses of variables are placed on

the stack; results ar e placed on stac k. The use of ~ORTH's stack will be

very f nmU.iar to anyone who ha s used the l!P pocket calculators.

rnicroFORTH Technical Manual Page I\

In particular, numbers arc placed on the stack. Rlaboratc calling

sequences and ternporary storage areas are eli111inated by its use.

FOHTH actually uses two stacks: the parameter stack de:rnribed above is

the most familiar to the casual user; the other is called the _r~j;_urn

§j;._9cl< ,_ Its primary use is storing return addresses for the interpreter,

although it may be used by the programmer for temporary storage.

1.1.3 Code

Some words are defined by code. This means that they contain a sequence

of processor instructions to be executed. Such a word is similar to a

subroutine.

The use of the FORTH ass~nbler to construct code definitions is covered in

Chapter 12 .0 (THE ASSEMBLER). It allows the programmer direct access to

the processor architecture for coding device drivers, time-critical

functions, etc.

1. 1. 4 High level_ definitions

Most FORTH words are defined in terms of other previously defined words.

Thus they are a sort of abbreviation. Such definitions, however, are much

more powerful than the notion of abbreviation conveys. In fact, perhaps

90% of the words in a vocabulary are definitions. These are

processor-independent. Such definitions begin with: and end with

The : is followed by the name of the new word being defined; this is

followed by the words that make up the content of the definition, and

finally the; terminates the definition.

1 .1.5 Blocks

The final element of FORTH is its blocl<s--chunks of secondary mernory 128

microFOHTH Technical Manual Page 5

bytes long. A block may contain l\ SCI! text (sue h as FORTH source) or it

may contain binary data. In either case, this secondary memory has been

logically arranged in fixed-length chunks, each of which is assigned a

number by which you refer to it, You may load programs from blocks or

place data in blocks as if the blocks were memory. FORTH provides the

access to them as "virtual memory 11
•

FORTH blocks reside on some form of mass storage: this is most often disk

but may be link tape, magnetic tapes, or any similar medium. The

particular medium used in a FORTH system is transparent to the user; that

is, blocks always appear to be in rnemory, regardless of where the system

fetched them!

Source text is organized in 11screens 11 , each of which consists of eight

128-bytc blocks (sectors). The size is chosen for convenience in display

(as on a CHT terminal screen). The use of FORTH's text editor for

managing text screens is covered in Chapter 7.0 (TEXT EDITOR).

1 . 2 .Kgyboard In12.ut

FORTH is a terminal-oriented language. It demands the fluency of expression that

only a keyboard can provide. The input FORTH wants is simple:

WQrds se@rated by sppees_,

In order to permit correcting errors and changing yoL1r mind, it recognizes:

RUl3 OUT to erase a letter (backspacing on CRT terminals).

When you are satisfied with your input, type:

H~TUHN to mark the end of a mess2ge.

~ORTH will respond with a space. Then it will proceed to read and act on each word

in the message. When it is done, it responds OK and spaces to a new line. This is

as simple a way Lo cormnunicate as we can devise.

microFORTH Technical Manual Page 6

In the chapters to come we will discuss the basic elements of FORTH in more detail

and describe the process of using or lllodifying the FORTll vocabulary for your

appU.cation.

microFORTH Technical Manual Page 7

2.1 Parameter Stack

An increasing number of computers and <lesk and pocket calculators nowadays base

their logic on a parameter stack. FORTH has a parameter stack that increases toward

low memory. There is a pointer to the word holding the number currently "on top of

the stack''; this pointer is kept in a register whenever possible, although it may be

in RAM memory. The stack itself is always in RAM. To add a word to the stack , the

pointer is decremented.

The stack is 16 bits wide and thus may contain numbers in the range -32763 in~

32767 or O in i 65535. Numbers may be values or addresses; as addresses are then

16-bit addresses, you may reference up to 65536 bytes of memory directly.

If you type a number on your terminal, the number will be converted to a 16-bit

binary integer and placed on the stack . Typing . (period or decimal point) will

cause the binary number on top of the stack to be converted to numeric characters

and printed on the ter1ninal. Most FORTH words expect one or more parameters on the

stack (includi.ng words in the assembler), so you must make sure that they are there,

and that they arc in the proper order.

l''igure 1 shows the r esutt of typing a sequence of words. HecalJ . that a word ts

" separated by spaces" . There a r e no special characters in FORTH, so that? and

~#$%& and 4th are all perfectly good words. Several of the most commonly used FORTH

words do deserve comment here:

(pronounced 11store ") is the rcpJ.accrncnt operator. It expects 2

microFORTH Technical Manual

Example

(1) 4 5 +

(2) 17 X

(3) X @ *

Page 5

FORTI-I Stack

You type:

4

5

+

17

X

X

@

*

Action

Number 4 converted to binary
and pushed on the stack.

5 converted and pushed on
the stack, over the 4.

4 and 5 replaced by 9.

17 on the stack (over the 9).

Location of X (which has been
defined as a VARIABLE)
pushed on the stack.

17 stored in X; both 17
and location of X removed
from stack.

(Remember 9 is still on the
stack from example 1).

Location X pushed on stack .

Address replaced by contents (17).

9 and 17 replaced with 153.

153 typed on terminal.

Stack em~ty.

microFORTH Technical Manual Page 9

parameters on the stack: an address on top and a number beneath. It

stores the 16-bit number beginning at the address.

Thus if you wish to place the value 17 in the location whose address

is given by X1 you might say

17 X

(pronounced "a t 11) is an operator that fetches a value. It expects an

address on the stack; it replaces it with the 16 bit contents of that

address. @ is an extremely important operator. It distinguishes

between loading and storing a value into a variable, a function

FORTRAN-like languages accomplish by context.

is an operator that types the number on the stack (and discards it).

These operators have been assigned single-character names because they are used so

often. Although their mnemonic value is weak, they are worth learning.

Similarly, -1- adds the two numbers on top of the stacl<, replacing them by the sum,

while~ subtracts, etc. Refer to the glossary in Appendix A for a more complete

list of the operators available.

Several words have been defined in basic FOilTll for 1nanipulating the stack. The

operation of th e se words is summarized i.n Table I. A fr1irly standard set of more

complicated stack operators is available, in some developed applicati.ons, for such

things as fetching numbers several levels down in the stack, etc.

The order of parameters on the stack is governed by several well-defined

conventions:

1. Numbers are always pushed onto the top of the stack or popped off

the top. Thus, if you type 1 ?. 3, the top is the right-· most (or inost

recent) number. lf you print these, the result might look like

. . . 3 ?. 1 OK

microFORTII Technical Manual Page 10

TAl:lLE r.

SJ:_ACK MANJPULATlNG _WOHDS*

FORTH Stack Stack
.\'.!QJ:c! ~lanAtion _li~ __ _f_.9j'g After

TOP TOP

SWAP Reverses order of 2 2
top two entries

DUP Reproduces
top entry

DROP Discards 2
top entry

OVER Pushes entry 2 on top 2 2
of entry 1

ROT Moves entry 3 to top 2 3 2 3
of stacl<

* Remember that all stack entries are 16 bits (2 bytes).

microFORTH Technical Manual Page 11

where the underlined characters indicate generated output.

2. l\ 11store 11 operation (I) operates frorn left to right (or entry 2

into entry 1), e.g.,

3 SEC I

stores 3 in SEC.

3. Multiple precision numbers are always placed on the stack with the

high-order part on the top and the low-order parts beneath.

4. Multiple-pararneter arithmetic operators use an order such that if

the operator were moved from a suffix position to an infix position,

the operands would be in their customary position. Thus:

A B -

ABC*/

is equivalent to

is equivalent to

A - B

(A* B) IC

5. An operation will destroy all its input parameters and leave only

its result (if any) on the stacl<. It will, of course, destroy no

more than its own parameters. Thus:

l 2 3 + will leave 1 5 on the stack

J\l.l routines developed for an application should adhere to these conventions.

The stack is located in high (Rl\M) memory and extends toward low memory. Unused

memory is defined as the area between the high end of the dictionary and the top of

the stack. The si.ze of the stack is lirnited only by this amount, sometirnes s£weral

hundred words. ln practice, rarely more than thirty or' so stack positions are used,

e ven in highly complex applications. The reroainder of this space is used as a

scratch buffer area for such things as output formatting.

FOHT!l checks for stack underflow and overflow after executing each word that is

typed at the terminal. Because FORTH does not begin executing these words until

after the carriage return is typed, the word that caused the error is typ e d out on

micro~OHTH Technical Manual Pa~c 12

the terminal, followed by an appropriate error message. Jf underflow occurs, the

error message is

STACK EMPTY!

The overflow message says

DICTIONARY FULL!

Since overflow can occur only when memory is full, it normally is not of concern.

Should this occur, however, the only recourse is to oiscard some portion of your

dictionary. See the chapter entitled "The l•'ORTH Dictionary Structure 11
•

The stack is by far the best place to use for temporary storage, since stack

accesses are fast and speciftc memory allocation is not required. In particular,

the stack is an excellent place for saving the contents of a variable which will

have to be changed temporarily.

2.2 Return Stack

FORTH has a second stack called the "return stack". It is primarily used by the

system for keeping return addresses for the inner interpreter. It is available to

the programmer on a limited basis, however, · and can be a handy place to save numbers

temporarily during complicated operations.

The commands which work with the return stack are

<R

R>

I

Pops a number off the parameter stack and pushes it on the

return stack;

Pops a number off the return stack and pushes it on the

parameter stack;

Pushes the number which is on top of the return stack onto the

parameter stack (without changing the return stack).

microFORTH Technical Manual Page 13

The return stack is also 16 bits wide.

The main constraint on the use of the return stack is that at the end of a

definition the next return address must be on top. Although this is really the

system's business, it does impose one important rule:

ANYTHING YOU PUSH ON THE RETURN STACK MUST BE REMOVED IN THE SAME

DEFINITION .

A second important use of the return stack is keeping DO-LOOP indices. This is

discussed in further detail in Chapter 5 .0 (THE COMPILER) . The reason for

discussing it here is that this use imposes a second rule:

ANYTHING YOU PUSH ON THE RETURN STACK MUST Bf: REMOVED AT THE SAME LEVEL

WITH RESPECT TO ANY DO-LOOP.

This rule is rath er difficult to state, alas; perhaps it may best be illustrated

thus:

If you put something on the r eturn .§..tack outside of Ji loop. it must be

removed Qutside th e loop.

Some examples will be given in Chapter 5.0 (COMPILER).

micro FORTH Technical Manual Page 111

3.0 NUMBERS AND VARIABJ_,ES

FORTH arithmetic is performed on integers and fixed-point fractions, rather than

floating point numbers. The use of integers takes advantage of the speed of integer

arithmetic operations in most microprocessors. 1-'0RTH's arithmetic operators are

designed to make integer operations as convenient as possible, without sacrificing

precision and speed. These will be discussed further under "Arithmetic"; the

purpose of this chapter is to discuss numbers and number for111ats as well ::i.s named

variables and arrays.

3.1 Numbers

All numbers that arc typed or used in text blocks are automatically converted to

binary and placed on the stack. The rules and conventions governing the use of

numbers are as follows:

1. The base used in all number conversions is the current value of

the variable BASE. You may set BASE to any value you wish; the

commands DECIMAL, OCTAL, and HEX, however, are provided to set the

most commonly used bases. BASE controls both input and output; thus

typing

OCTAL 1000 DECIMAL .

will print 512. BASE is the location of an l}..::!2.Lt. variable and care

should be taken to refer to it only by C@ and C! (character fetch and

character store).

micro FORTH Technical Manual Page 15

2. During the bootstrap loading, the default base is HEX; after basic

FOHT H is 1 oadc d , it is D ECI Ml\L . Convent ion ally I you should ass urne

that BASE is DECIMAL in all application blocks; if you wish to use

OCTl\L or IIEX in a block I always return to DECIMAL at the end.

3. A val id number is one which may be converted su cce ssfu l ly ; that

is, it contains only digits less than Bl\SE plus a leading minus sign

(-) to identify negative numbers. Note that this does not include+

(to indicate positive). No blanks arc permitted; conversion stops

when a blank is reached.

4. A 11- 11 before the leftmost digit causes the number to be negative

(two's complement). Otherwise the number will be positive. For

example,

is a negative number.

5. All numbers are converted to 16-bit integers. Depending on

whether you are using unsigned or signed arithmetic, a 16-bit integer

gives a range of

0 ~ n ~ 65535

or -32168 ~ n i 32767

Numbers which exceed these limits will give an incorrect result.

6. Applications 111ay need to handle numbers of more than two bytes in

length, such as 2ll--bit integers, floating point numbers, etc.

Routines to handle such number forrnRts are available but are too

application-dependent to be offered in the basic system.

micro FORTH Technical Manual Page 16

3.2 VARIABLEs and CONSTANTs - ----- - --- -- - -

The basic FORTH system provides two ways to name a location containing a value:

VARIABLE and CONSTANT.

0 VARIABLE X

defines X as a named location 16 bits wide whose initial value is O, while

1000 CONSTANT Y

names a location Y whose initial 16-bit value is 1000. The difference between these

is that when you execute X (e.g., by typing it), you get its address on the stack,

whereas typing Y pushes Y's value on the stack. Each CONST /\NT or VARI ABLE occupies

10 bytes: two for the value, plus eight for the name and other system informatton.

Normally a CONSTANT is thought of as a named value which will change seldom or

never. The advantages of using CONSTANT are twofold: (a) a standard value which is

used in several places should be defined with its value given only in one place, so

that it may be changed simply in the future without the risk of a 11missing one

place 11
; (b) use of an actual number as a literal in a definition costs three or four

bytes, whereas reference to a CONSTANT costs only two.

A VARIABLE, on the other hand I is really a named location. You may fetch its value

by using the command@ (at) or store into it by using! (store):

100 VARIABLE A O VARIABLE B

A (l B !

moves the value of A to B. The command ? (defined as fl .) is provided for fetching

and printing the value of an VARIABLE:

X '?

Now, this doesn't mean you can't change the value of a CONS'l'ANT. The co11unand'

(tick) fetches the address of the word which follows in the input stream; thus

micro FORTH Technical Manual Page 17

100 I Y

will store 100 into the address of Y. Of course, this is just a little harder;

CONSTANTS are optimi¼ed for uses in which a value will be used often but changed

seldom.

3.3 Arrays

Most applications contain arrays of some kind. FORTH not only allows you to define

kinds of variables other than CONSTANT and VARil\ALE, it also allows you to define

kinds of arrays that are optimized for a particular usage. Later on we will

describe how you may define kinds of variables and arrays yourself (in Chapter 13.0,

SPECIAL DEFINING WORDS). The simple use of VARIABLE itself, however, makes a very

straightforward kind of array possible.

As your FORTH vocabulary is compiled, a system variable called H (which may be

fetched by HERE) always points to the next available byte in your dictionary.

Simply adding a number to H will cause . that number of bytes to be sld.pped over in

the dictionary, leaving space for the array. Therefore if you say

0 VARIABLE DATA 99 H +!

you will have defined DATA to produce the address of the first byte of 101 available

bytes. The first two bytes will be initialized to O; the remaining 99 contain

undefined values. Here the command+! is used to increment H by 99. Thereafter,

20 DATA 1-@

will fetch the 16-blt value beginning at the 21st byte in DATA, etc. If you wish to

access the bytes individually, you may use the com11mnds C@ and CI . These fetch and

store 8-bit numbers, although those numbers will be 16 bits wide whiJ.e on the stack.

The words MOVE and ERASE are sometimes convenient to use with arrays of data. The

command

source destination count MOVE

micro FORTH Technical Manual Page 18

moves 'count' bytes of data from the locations starting at the source address to the

locations starting at the d~stination address. The crnnmand

address count ERASE

zeros 'count' bytes of memory starting at the specified address.

In Chapter 5.0 (COMPILER) you will see how to run through arrays in a loop. Chapter

6.0 (BLOCK 1/0) will suggest techniques for using ~'OHTH blocks as 11vtrtual memory"

for data, a technique which offers great savings in memory if you have access to

mass storage in your application.

3. JJ USER Variables

There exists a special kind of variable known as a user variable. While normal

variables will provide the address of data that is contained within their

definitions, user variables point to a separate region of memory known as the user

area. User varia blcs are defined by the word USER in terms of their offset from the

beginning of the user area. For example,

20 USER SCR

defines SCR to be the location of the 21st byte in the user area. The base of the

user area is controlled by a system variable called U (sometimes in a register).

User variables were initially designed for multi-terminal systems in which each user

of the system requires a private copy of the system variables (hence, the name

USER). Your development system has only one fixed user area and one terminal. User

variables are retained primarily to allow for rnutli-programming as an option.

Caution: the user area on your system is of fixed allocation and contains important

system variables (e.g., BASE, H). For this reasonvou may not definey.Q!!r. own user

variable~! However, as the user area is in HAM in cross-compiled applications, it

is sometimes a useful place to put a few application variables. Techniques for

doing this are discussed in Section 16. ;> .11.

microFOflTII Technical Manual Page 19

l.J.O ARITHMETIC

FORTH does not attempt to provide a complet e set of arithmetic and logical

operators. Rather, it offers the operators most commonly useful and encourages the

user to add any more he feels will make his particular problem more tractable.

Those operators normally available i nclude 16-bit integer addition and subtraction;

mixed B/16 bit integer multiplication and division; and some logical operators.

Remember that a ll operands for FORTI! functions ar e on the stack, and that all

re s ults are left there. Numbers on the stack ar e all 16 bits wid e (2 bytes). In

this chapter, wlien we speak of 7- nnd 8 - bit nu111bers 1 we ar e referring to the

significant bits in the number, not to its size on the stack.

Two functions bear speci a l discussion because they are very unusual. The operator

*/ multiplie s a 16-bit number by an B-bit number and divide s by a '(- bit nurnber. The

intermediate product is 23 bits, so that the result i s fully a ccur a te to 16 bits.

Similarly, */MOD multiplie s a 16-bit number by an 8-bit ratio with a 23-bit

intermedi a te pr o duct, giving a 16-bit quotient and 7-bit remainder. This makes

possible accurate integer arithmetic without loss of precision from truncation

errors . A de tail ed li s ting of' the most common operator s app ears as Table _11.

Thes e op erations are extremely useful for sc a ling and unit conversion. For example,

suppose you have an a pplic a tion in which th e internal 11ni.t of length is ,nils

(.001 11
), but certain lengths need to be e nter e d in 1nillimetcr s . If you dcflnc MM

thus:

MM 2'j0 63 */

then to input ?Ornm, you c ould just type

micro~'OHTII Technical Manuril Page 20

ARITHMETIC OPErtA'l'OHS

+

,.

I

*I

*/MOD

UII

U/

l·,00

MINUS

i-llN

<

>

O<

OESCHIPTION

{idd i tion

Subtract.ion

hul tipl icat.ion

Division

Multiply - Divide
(23-bit intermediate
product)

Multiply - Divide
(23-bit intermediate
product)

1-iultiply

Divide

Modulus

Unary minus

Max imu,n

Minimwn

Less than
(truth value)

Greater than
(truth vc1lue)

Equality
(truth value)

Less than 'MJro
(truth value)

f;qual to zero
(truth value)

COMPUTES

S116 + so 16 ::: so10

s 116 - S016 ;:: S016

s 116 II so 0 .. 5016

s 116 I so'] ::: so16

~S216: S 18)23 I SO'l :: S016

Sum can 1 t exceed ?.3 bits,

~ 1-~-~ -1~)23 I so 7 = so 16, s1 8rem

Can't exceed 23 bits,

s1u * s0 8 = so 16

.:5115 / so1 = SOB>

s1 16 MOD S07 = SOB

larger of (S 1 I SO), signed

lesser of (S 1 I so) I signed

if Sl < so, signed;
0 otherwise

if S1 > so, signed;
0 otherwise

if 51 = so, signed;
0 otherwise

if so < O·
' 0 otherwise

1 if so = O·
' 0 other, ,:ise

The notation in the COMt'U'ff~S column above shows the stack posit.ion of' ope1'ands. SO
is tl!e top stacl< item, ::i1 is the i tern t)elow, etc. The subscript lives each number's
prcc 'c;tsion. lie r:1cmber, all stack entries occupy at least 2 bytes. The hi.?,h-order
byte of and-bit number is 0, ~xcept as noted, all multiplication and division are
un:oisned.

wicroFORTH Technical Manual Page 21

20 MM

and you'd have the length in mils on the stack. *I is particularly useful for

computing percentages. Given

% 100 */

then

1275 15 1,

gives you 15% of 1275. Similar definitions might be used to automatically calibrate

measured data.

The use of these combined operators makes j_t rarely necessary to resort to floating

point. This is nice since software floating point is slow and cumbersome while

hardware floating point is expensive and rarely available on microprocessors. There

is another cost, that of space versus accuracy. "Single precision 11 floating point

numbers occupy at least 3 bytes and give only ~-1/2 digit resolution, ~mile in the

same 3 bytes you can carry nearly 7 digit resolution as an integer or fixed-point

fraction.

Still, there are times when scaling i.s a problem: for example, when entering input

or manipulating data.

Input is rnost easily handled by determining a reasonable scale and then scaling

quantities internally with operators such as */MOD. Therefore you can work in

tenths of seconds, 1nilU .volts, rnegahort;1, 1 or whatever unit is appropriate to the

problem.

Data is best handled using "block floating point". This technique allow:-; you to

specify one scale factor which will apply to a block of data. Thus the data can be

kept in as 16-bit integers, with a single number carrying the scale. All arithmetic

performed on this data can then apply the scale factor as relevant. This technique

handles the vast majority of data scaling problems.

microFORTH Technical Manual Page 22

FORTH's use of procedural logic (rather than descriptive or algebraic logic) may

take a bit of getting used to. 13ut it is extreuiely effective, even for very

elaborate calculations. The important thing is to factor your definitions nicely,

identifying li .ke components and then defining these a~ operators. Choosing good

names for these can make the resulting code not only crnnpact but readable.

microFORTH Technical Manual Page 23

5.0 COMPILER

FORTH contains a simple and fast 1-pass compiler. It does not rearrange source code

as does a FORTHAN or PLM compiler; rather, it generates strings of addresses of

previously defj_ned routines. It tnakes the task of writing efficient high-level

routines extremely straightforward and allows complete control over logical flow.

The basic form of a definition is

word other words

Many examples arc availablc -- just look through the basic program listing. The

syntax is as simple as possible. The first word following the colon is the word

being defined. There is no punctuation except for the : and ; (retnember, 1-,ords are

separated by spaces).

5. 1 Literal~

Any 8- or 16-bH nurnbcr 111ay be used directly in a clefi.nition. Such literals are

co mp i.1 eel in --1 i ne as 3 or 11 bytes: the first 2 contain the address of a short

routine to push the contents of the remaining byte(s) onto the stack. Tim longer,

11-byte literals arc generated whenever the literal value is negative or larger than

2S5.

Literals are eoinpiled using the current J3ASf!;, which 10ust be set before starting a

colon definition. If you include DECIMAL, MEX or OCTAL in a d e finition, BASE will

not be set until the word is executed. Consider, for example,

microFORTII Technical Manual Page 211

DECIMAL : A HEX 20

HEX : B DgcrnAL 20

Then A will put decirna l 20 on the stack, and chanp;e BASE to 16; ll will put decimal

32 on the stack and change BASE to 10.

5.2 Logical Flow

The cardinal rule that must be followed is this:

YOU MAY NOT USE ANY WORD THAT HAS NOT BEEN PR~:VIOUSLY DEFINED.

Re1nember, this is a 1-pass compiler. The same rule applies to the assembler

(covered later in this text). This means that forward references (except in case of

the IF ... ELSE ... THEN construction, which we'll get to shortly) are not allowed, a

rule which has the effect of requiring you to modify your programming style to favor

11structured programming 11 •

Since FORTH encourages extreme modularity, your control of logical flow will mainly

be through appropriate management of previously defined words in a definition. In

addition, FORTH supplies commands for forming loops and two-branch conditionals.

5.3 DO-LOOPs

Most loops are constructed by using the beginning word DO (which expects 2 loop

parameters on the stack) and one of two ending words, LOOP (which increm~nts the

loop counter by 1) or +LOOP (which increments it by the amount on the top of tho

stack, an amount which is then re111oved from the stack). The loop parameters are the

initial value of the index, taken from the top of the stack, and the upper limit,

taken from the second word of the stack. For example, to print out the numbers from

0 to 9, you might de fine PRINT as

PRINT 10 0 DO I . LOOP

These numbers are treated as unsigned (that is, 0 to 6553?). The loop ter111inates

microFORTB Technical Manual Page 25

whenever the limit is reached or exceeded. The group of words between DO and LOOP

will be executed once every pass through the loop. Because the test for termination

is at the end of the loop (after incrementation), the loop will always execute at

least once.

The two loop parameters are removed from the stacl< by DO and pushed on the return

stack, which places certain restrictions on their accessibility. The loop counter

may be accessed using the word I, which places the value of the counter on the

stack. Remember that I is a verb! You may not directly modify it. In fact, the

counter may not be changed at all except by the LOOPs. In nested loops, I provides

the counter for the innermost loop. J similarly provides the counter for the next

outer loop, if any.

Because the loop parameters are kept on the return stack, and because the return

stacl< changes when you begin and end definitions, DO must be in the same definition

as its terminating LOOP or +LOOP, as must I or J. Furthermore, you cannot use <R

inside a DO ... LOOP and still have access to the loop counter using either I or J.

Note: .fl DO ... LOOP structure must only be used inside.<!. definition.

£i'igure 2 considers a very simple loop in detail. There are also some examples

below; try to understand how each works, referring to the Glossary for unfatniliar

words. You may find it helpful to keep track of the stacl< on a piece of scratch

paper.

1. Suppose you want to write " loop to handle a variable nurnbcr of

items in some way. The easiest way i.s to specify the number of items

as a parameter to the command containing the loop. You provide for

this simply by _o111ittin_g the needed parameter from the definition:

PRINT 0 DO . LOOP

microFORTH Technical Manual Page 26

STEP

1

2

3

4

5

6

7

COMMAND

10

0

DO

I

LOOP

/

CR

AC'J.'ION

10 pushed on stack (uµper limit)

0 pushed on stack (nlarting i11dex)

10 and O put on return stack
(stack clear).

Pushes current vRlue of loop
index on stack (0, then 1, 2,
etc. to 9)

Types out top of stack (O, 1,
2, etc.)

Increments index, then compares
with upper limit; if index
(limit, returns to step 4.
When index= limit, discards
both and continues to step 7.

Types carriage return; executed
after loop has repeated 10
times for values O - 9.

EXAMPLE OF A LOOP IN AC'f ION

10 0 DO 1 LOOP CR

111icroFOR'l'll Technical Manual Page 27

llere the limit_ was omitted. This means you must provide not only the

numbers to be printed by . inside the loop but also t!H-~ .number .Q.f

numbers. A reasonable use of the definition above might be for

number conversions:

OCTAL 10 100 1000 10000 DECIMAL 4 POINT

(Prints 4096 512 64 8

..Caution: At run time, no check is made for stack underflow or

overflow within a definition. Thus, stack mismanagement in loops can

be repeated, and the accumulated errors may be fatal.

2. Sometimes you may want to specify both loop parameters at

execution time. Again, you simply leave them out of the definition.

As the 11natural" order for specifying limits is "lower, upper", which

is the opposite from the order DO expects, you might want to SWAP the

arguments; moreover, since a loop terminates when the limit is

reached after incrementation, you may often want to add 1 to the

upper limit.

In the example below 1+ adds 1 to the top of the stack. Assume Twill

type out a specified line of text. The purpose of this definition is

to print a range of lines.

LIST 1+ SWAP DO IT LOOP

Thus

0 15 LIS'!'

will list lines Oto 15.

3. 1'his example shows how you may integrate a function over a

specified range of values. llerc we airnurne FX to have been d e fined to

compute the value of a function of X where X is given as a parameter.

The following exarnple computes the Slllll of values over a given range:

microfORTH Technical Manual Page 28

SUM 1+ SWAP DO I FX + LOOP

To use SUM you would say,

0 100 200 SUM

The sum would be left on the stack. The l i111i.ts are 100-?.00; the O is

put on the stack as a starting value for the integration. SUM might

be more convenient to use if you didn't have to think about the 0.

INTEGRATE will supply it for you:

INTEGRATE 0 ROT ROT SUM

Typing

100 200 INTEGRATE

will return the same value on the stack that SUM did.

4. Here is an example which shows how you may nest loops to provide

two dimensions, in this case several rows of numbers:

DUMP SWAP DO CR I 16 + I DO

I? 2 +LOOP 16 +LOOP ;

This takes a range of memory addresses on the stack and prints out

the contents of that region of memory, as 16-bit numbers, 8 numbers

per line. A multiple of 8 numbers will always be printed even when

the requested range is not a multiple of 8.

Always remember: DO and LOOP must be in the same definition. Likewise, I may only

be used in that definition (since entering another definition modifies the return

stack).

microFORTH Technical Manual Page 29

5.4 BEGIN ... END Loops

It is possible to use +LOOP to provide a loop which would run indefinitely, until a

condition is met by giving a truth condition (0 or 1) as the increment to +LOOP. A

rather more straightforward type of indefinite loop is provided by the commands

BEGIN ... END.

BEGIN takes no parameters, compiles nothing, and serves merely to mark at compile

time the beginning of the phrase to be performed repeatedly. END takes one

parameter; if it is zero (false) the phrase will be repeated; if it is non-zero

(true) the loop wi.11 terminate and the next word after END will be executed. Here

is a simple example:

MONITOR BEGIN Rl.:AD OVER .. END DROP

In this example READ is assumed to be a function which reads a value from a device.

This loop will monitor the device until it returns a value which is equal to the

value which was put on the stack before MONITOR was executed.

NOTE: A BEGIN ... END structure ..!!L\!.tl only be ~ged inside~ singl~

definition.

5.5 Conditionals

FORTH has a standard 1- or 2-branch conditional statement. The syntax for a 2-way

branch is

condHi.on U' true phrase ELSE false phrase THEN continuation ...

Omitting the ELSF. and the false phrase produces a 1-way branch:

condition IF true phrase THEN continuation ...

These structures also rnay 9,0.l.y be used inside a definition. Use of the conditional

statement is illustrated in these exarnples:

microFORTH Technical Manual Page 30

EQUAL AB= IV 3 ELSE 9 THEN 1+ .

will print tj if A and 13 are equal and 10 if A and B are not equal. A less naive use

is

0 VARIABLES 99 CONSTANT LIMIT

SLIM SQ LIMIT> IF 100 ELSE S@ 1+ THENS

Remember that the IF will jump to r:LSE or THEN if the top of the stack contains zero

(false). Therefore, the n· inherently contains a 11not equal to 0 11 test.

Note that IF will destroy its parameter. If the value on the stack to be tested by

IF is also needed inside the IF ... THEN clause, it must be DUPed before the IF. Thus

in

DENOM@ DUP IF NUMERATOR@ SWAP/ RATIO ELSE DROP THEN

the/ divides NUMERATOR by DENOM and the DROP drops DENOM in case DENOM was 0. The

word -DUP, which DUPs the top of the stack only if it is non-zero, may be used to do

exactly the same thing without the need for an ELSE:

DENOM@ - DUP IF NUMERATOR@ SWAP/ RATIO I THEN

Several words have been defined to perform other tests for IF:

0:::

O<

<

Replaces a number by 1 if the number was O, or by O if the

number was non-zero.

Replaces a number by 1 if the number was negative, by O if O or

positive.

Replaces tdo numbers by 1 if equal, otherwise by 0. Note that -

is sufficient to test for not-equal.

Replaces two numbers by 1 if the lower is less than the top

number, otherwise by 0.

microFORTH Technical Manual Page 31

> Replaces two numbers by 1 if the lower is greater than the top

number, otherwise by 0.

NOT Reverses the truth of the top of the stack (replaces non-zero by

0, 0 by 1 . Same function as O=) .

Figure 3 illustrates some successful and unsuccessful ways of nesting structures.

5.6 Special Loops

Occasionally a situation arises in which, for any number of reasons, one of the

standard loop structures simply does not yield a satisfactory solution to a problem.

For example, it is often desirable to terminate a DO loop before its full range has

been exhausted, or to terminate a BEGIN ... END loop by testing a condition at the

middle or beginning of the loop. FORTH provides special help in these situations

with the words LEAVE and WHILE.

5.6.1 LEAVE

The main difficulty in the use of DO loops is the problem of prematurely

terminating the range of the loop (as in search operations). Often this

can be achieved by using +LOOP and passing it a very large increment.

This presumes some knowledge of the range, however, because if the

increment is too large the loop index will overflow and become quite

small, achieving the opposite of the desired result (Le., an infinite

loop). Sornetirnes a BEGIN ... RND loop will suffice if a Boolean expression

can be devised that properly expresses the two conditi.ons for termination

and i. f' some sub st i t.,ute for il loop index can be le ft on the stack. l n both

of these exarnples the j_mpos:i.t.i.on of additional items on the stael< can

severety complicate stack 1na11agernent.

The word LEAVE provides an excellent means of ending the range of a DO

loop. It does this by setting the loop limit to the current value of the

loop index. Then, when the LOOP or +LOOP is reached, any positive or 0

increment will cause the limit to be met or exceeded and the loop ends.

microf0RT!I Tectinical Manual Page 32

RIGHT:

100 0 DO I 10 + I D~OP CR 10 +LOOP

Ghis ! refers
to this loop

~ ~-this I refers to this loop

WRONG:

X@ 0 DO I 100 > rrwop THEN

(/
this is not what you had in mind!

RIGHT:

[limit on stack] 100 MINO DO I 50 <
~

IF ~ ELSE ~ THEN

RIGHT:

[limi t on stack]

t t
<50 case >50 case

-------DUP IF ODO LOOP THEN

Crevents executing loop if limit 1s 0

NOTE: without the IF, the loop would have
been executed once

EXAMPLES OF NES'rED STRUC'I'URES

microFORTH Technical Manual Page 33

Non: : LEAVE rnus t QD.1y be used _i_n_s_i_d_e _a J)_Q LQ_QQ.

'l'he f'ollowing example scans a region of memory and converts all ASCII

nulls to blanks until either a count is exhausted or an end of text (3) is

reached. The count is on top of stack with the memory address beneath:

SCAN OVER+ SWAP DO IC@ -DUP I~

3 = IF LEAVE THEN ELSE 32 IC! THEN LOOP

The phrase OVER+ SWAP is commonly used to convert a start address and

count into a limit and initial value for DO loops. Note that, since LEAVE

works by modifying the loop index, the loop will not actually terminate

unt.Ll LOOP or +LOOP is reached. That is, words between LEAVE and LOOP

will be executed normally.

5 . 6 . 2 _}'l_H_I_L_E_

\~HILF: is a word that combines some of the functions of both THEN and END.

Syntactically, it is used as follows:

BEGIN •.. condition IF true phrase ELSE false phrase WBILE

or

BEGIN .•. condition IF true phrase WHIL~

The H' compiles ,is ,i conditional tJt~anch, as usual. Tf the phrase

i[lli!Jediately before \•HHLF. is executed, then the loop will be repeated.

OttH~rwise tc1e loop i.s exited. What this 111eans in the first example is

that when the I~ condition is true, the true phrase is executed and then

the loop is exited. As long aH the condition is false, however, the false

phrase is executec.l anc.l the loop is repeated. In the second example a

f,ilsc condition .lt the IF' immediately exits the loop, while if a true

condition exists, the true phrase is executed and the loop is repeated.

microFORTII Technical Manual

NOTE: WlllLE nrnst only be used wiLhin a definition.

WIIILE can be used to write loops wHh a pretest r::ither than a posttest (as

in D0--LOOPs and convent.i . onal. BEGIN-END .loops). 'fhe pretest .is performed

by JF, and the hocty of the loop is between lF and WHILE. Note that the

loop may be performed zero ti111es wi.th a prelcst, as opposed to a post test.

For example, suppose you have a queue which a cau111ulates a backlog of

actions to perform (the queue might he interrupt-driven). You have

defined the words:

J\NY Places true on the stack if there is anything waiting in

the queue

PERFORM Performs the action at the head of the queue

ADVANCE J\dvances the queue pointer to the next item

Then the following loop will perform all actions in the queue:

EMPTY BEGIN ANY IF PERFORM ADVANCE WHILE

Note that if there are no actions pending, the loop exits immediately.

5.7 Special Literals

5.7 .1 Use of L'__l

You have seen in earlier chapters how' can be used to provide the address

of the word following it. When ' is used within a definition, however, it

is compiled and will not be executed until such time as the word in which

it is used is itself executed, Thus the ' will get the address of the

next word of the input string at execute time, not at compile time. This

may he desirable; but if the intent j_s to gel the address of a word

compiled as a literal, a different word, ['], must be used.

microFORTH Technical Manual Page 3'5

['] is a word which the compiler executes at compile tirne. This word uses

' to find the address of the word which follows it and compiles this

address as a 16-bit literal.

5. '/ . 2 Use _of IN-LINE

Occasionally you will find yourself compiling expressions that are

invariant at execution time. That is, they will evaluate to a constant.

This is an unfortunate waste of both time and memory. One solution would

be to name these expressions as CONSTANTS. This is preferable whenever

the value is to be u sect more than once. Alt erna tivel y, the word IN- LINI~

will remove a nurnber from the stack at compile time and compile it into a

definition as a 16-bit literal.This number must be computed and left on

the stack before starting the definition and must be on top of the stack

at the place where IN-LINE is used. All loops and conditionals also use

the stack at compile time. This means that IN-LINE cannot appear inside a

loop or conditional phrase and st ill have access to its intended

parameter.

NOTE: ~ and IN-LI.NE. must be used oJJ.ly within a definition.

The one thing which all of the compiling words (DO, LOOP, +LOOP, REGIN, END, IF,

ELSE, T!IEN, WHILE,['], IN-LINE) have in corornon is that they a ll execute at compile

time to perform some compi.ler-re.l.ated activity, rather than being compiled as an

address, as ~'OHTII words normally are. The ability to define such words enables the

compiler to be arbitrarily extensible. This facility is implem ented by roeans of the

word IMMKDIATE (you may see examples in Screen 9).

The word IMMEDIATE is placed immediately fol.lowing the definition of a new word that

is added to the cornpiler It sets a spec ial flag (ca lled 11Precedencc 11
) in the new

word that prevents tt1at word from ever being compiled into a later definition.

Instead, when the cornpi. ler comes ac ross this word in a definition, it is executed at

micro~ORTH Technical Manual Page 36

that time and must perform its functions explicitly. Take for example:

[SWAP] SWAP IMMEDIATE

When [SWAP] is encountered in a definition, it swaps the top two items on the

compJ~.1._g _time stack. This can be useful for making a value destined for IN-LINE

available inside of a loop or conditional phrase (since DO, BEGIN, If and ELSE leave

addresses on the stack at compile time).

Another important word that is used in the definition of compiling words is \ . Let

us use as an example the definition of DO, defined in screen 9 as:

DO \ DO i!ERE IMMEDIATE

The DO which appears after the\ refers to a word that was preco111piled in the

initial boot load. This previous version of DO (referred to as the II code DO") is

the one that, when executed, will move two items from the parameter stack to the

return stack. This is the last time that the code DO is ever referred to explicitly

because the new definition (called the "compiling DO11) wi.11 supersede the earlier.

The code DO has not been lost, however, because its code address has been compiled

into the definition of the compiling DO. Then, whenever the compiling DO is

executed, the word \ will compile the address of the code DO into the next free

space in the Dictionary. Thus,

\ DO is equivalent to [') DO 2 - ,

HERE then places on the stack the address of the byte following the newly compiled

reference to the code DO. Later, LOOP or +LOOP will use this address in determining

where the compiled loop should return to. Finally, IMMEDIATE is used to rnark the

compiling DO as being a compiler extension.

It should now be clear why co111piling words must not be used outside of definitions.

The reason is simply that co1npiling words can only compile. The intended function

of DO is not perfor111ed by the comg_iling DO, but by the cod~ DO that is compiled. In

order to be executed, the code DO must then be compiled into a definition.

microFORTH Technical Manual Page 3"(

5.9 Memory Usag_e and Timing

The length of a : definition is very easy to determine. The colon and word generate

the dictionary entry, ~~ich gives an overhead of 8 bytes. Thereafter, add 2 bytes

for every defined word in the definition, including the semi-colon, and 3 for every

IF, ELSE, END, WHILR, LOOP and +LOOP. Add ?. bytes for each DO and none for any

BEGINs or THENs. Add 3 bytes for short literals and 4 for literals greater than 25~

or less than 0. (IN-LINE and (1] literals are always long.) O and 1 are defined as

constants; they take only 2 bytes. Timing depends on the execution tirae of the

components of the definition (refer to the appendix for your processor). If you are

trying to decide whether to define a phrase separately or include its functions in

other definitions, you can assume that you break even in mernory space if you Hill

use the defined word 2 to 5 times; you will save length - 2 bytes for every

subsequent usage.

Length of phrase:

Uses to break even:

5

5

6

lj

1-n 2.14

3 2

The cost in time will be 2 interpreter cycles per usage--not very much for what can

be extremely great savings ln memory. For time-critical portions of the application

you may use the li'ORTH assembler and work at full pt•ocessor speed.

In cross-compiled applications, the fir st 6 bytes of every de fin it ion are stripped

off, since they are needed only for systems with interactive terminals. You break

even in space dcfini.ng an eight byte phrase if it will be used twice.

microFORTH Technical Manual Page 38

6 .0 BLOCK 1./0

Disk I/0 is handled by FORTI! in standard blocks of 128 bytes. This fixed block size

applies both to FORTH source text and to data taken by FORTH programs. (A complete

screen, or unit of text for display and editing, consists of 8 contiguous blocks.)

This apparent inflexibility may appear strange to programmers accustomed to

designing specialized data formats, but in fact ca uses the entire problem of I/0 to

disappear behind one standard block handler. The block size chosen is a convenient,

modest size. FORTH applications exist with several data records in a block, or with

several blocks forming a data record. The FORTH word BLOCK is used to gain access

to data blocks. BLOCK takes a block number off the stack and replaces it with the

address of a buffer that contains the requested data, performing any reads or writes

as necessary.

Most microFORTH systems are configured with eight disk block buffers, 132 bytes

long. Each buffer begins with a 2-byte block status word which contains the block

number of tl1e data currently occupying the buffer (or O if empty). Tl1e high-order

bit of this status word may be set to indicate that the buffer contents have been

updated and must later be saved. The next 128 bytes comprise the data for this

block. The FORTH word BLOCK is used to gain access to data blocks. BLOCK takes a

block number off the stack and replaces it with the address of a buffer that

contains the requested data, performing any reads or writes as necessary. The

address returned by BLOCK points to the first byte of this area. The last 2 bytes

are always O. These bytes are very important and care must be exercised to never

overwrite thern. During the loading of a screen, they serve to stop the sea nning of

the current block and to pass control to the next block in the screen. The entire

buffer area can be cleared to O by the word 1-:HASE-CORE. Note that any buffers

marked updated will never reach the disk if ERASE-CORE is used. This can be useful

if you catch an error in a disk buffer before it is wriLten back on the disk.

microFORTl! Technical Manual P<1ge 39

The only requirement for fitting data records into this structure is that data

record numbers be a fixed function of block nwnher; then a word can he defined that

will use BLOCK to fetch the block(s) containing records requested by block number.

Here is an example in which data records are smaller than blocks. Three CONSTANTs

have been defined: LR is the data record length in bytes, 0/B is the number of

active bytes per block, and START is the first block of the file.

ADDRESS LR B/ B 11 /MOD START -~ BLOCK +

ADDRESS replaces a "record" number on the stack by the address of the first word in

the record, having fetched the record as necessary.

It should be noted that disk systems do not require any sort of directory in memory

or on disk, as block numbers are a direct function of disk address (the exact

relationship is designed to suit the particular disk involved). The fact that a

block number is a fixed function of absolute sector address gives you the ability to

allocate disk space in a fashion appropriate to your intended use to minimize head

motion and thus improve performance. Applications involving management, of

complicated data fil e structures sometimes have a disk directory; this is a feature

of the application, however, rather than a standard feature of FORTH. Disk blocks

which are not in use should be flagged, normally by putting O in the first 2 bytes-

You may define named fields in a data record by using a definition such as ADDRESS,

above. Suppose you have a variable R/1 for remembering a record number. Then you

could define some fields thus:

FIELD Rfl g ADDRESS+ ;

OBJ F.CT 2 FIELD ; TIME 6 rU:LD DATE 8 Fil•:LD

After this you may set H/1 and access these fields as though they were normal

VARIABLF.s, using (! and I You may even define an array:

DA'fA 10 F'U:LD +

so that 1 DATA fetches the address of th e second byte, etc.

micro~ORTH Technical Manual Page 110

The one thing you must be careful of in such a sche1ne i.s that when you store

sornething in a data block, you must ensure that the block is 111arked as having been

updated so that it wil 1 be written out in due course. The co111111and which does this

is UPDATE. UPDATE flags the buffet· 111ost recently accessed a~ having been updated.

There are many ways of including UPDATE in store operations, of which the simplest

is to define a special version of I for data:

!D UPDATE

Then you use !D ~~enever you are storing into a data block.

6.1 Error Checking

BLOCK itself does not perform any error checking. The capability for error

checking, however, is included in the disk utility, based on the following defined

words:

ERROR

[BLOCK)

Returns the disk status as of the last operation, masked for

error bits.

Used like BLOCK, but checks for disk read errors. [BLOCK] will

read up to 3 times, issuing error messages, if errors are

encountered, and tallying errors. It will also keep whatever it

has after the last read. The error message reports the sector

number.

You may wish to define a word similar to [BLOCK] which handles errors differently.

microFORTH Technical Manual Page 111

'(. 0 T~XT EDITOJl

Although you may type in definitions at any time, they will be lost if you reload

the program, Moreover, the source is lost forever--you cannot recall it to refresh

your memory! There are two utilities supplied with microFORTB which allow you to

maintain the text for your definitions in perrnament for1n on the disk. The EDITOR

allows you to edit your definitions on the dis!< and modify the text; the PIUNTING

utility prints listings and indexes to text on disk.

As the normal 128-byte size is too small for coherent amounts of program source, the

EDITOil use:-; 2 9..reens (roughly the right amount of text for a CRT screen). A screen

consists of 8 contiguous blocks of text, which will be formatted as 16 lines of 611

characters each for display and editing. Lines are numbered 0-15.

You may list a screen at any time by giving i.ts numbel' and LIST. fo'or example,

13 LIST

lists screen 13. Screens that ha vc names (defined using CONSTANT a s described in

Section 9.1) may be requested by name:

TRACK LJ.ST

LIST not only li .s ts the screen, it also sets its number jn the v,niab.le SCH. The

EDITOR uses SCR to 11remember 11 which screen is being edited. Thus, you should LIST a

screen befor~ editi.ng it, although you rnay omit this step by typing

screcnil SCR

microFORTH Technical Manual

During editing, you may list your current screen by simply typing L.

'/ .1 J:.QXt _Editing Utility_

The EDITOR is not resident on the COSMAC syste1n, but may be loaded by:

EDIT LOAD

On other systems, the editing Vocabulary is accessed by the word F:DITOR. You will

retain access to the EDITOR until such time as you compile a new word, after which

you must retype EDITOR or EDIT LOAD to return to the F:DITOR's vocabulary. In

particular, if you LOAD a screen, you will leave the EDITOR vocabulary and return to

working vocabulary. Vocabularies are discussed in Chapter 14.0.

The editing commands are

7 T

11 text 11

LI P text CR

7 H

13 I

Type line 7 (place in line buffer). The line number is

saved on the stack.

Place text in line buffer.

Place 11 text 11 in the line buffer and then replace line 4

with the line buffer contents. Can be used to edit text

that contains the 11 character. Because the text is

terminated only by the carriage return, P must be the last

command on a line. Note that the li.ne number for P, if

left over from T, need not be repeated.

Heplace line 7 with contents of line buffer. If you are

replacing the line just typed (with T), you need riot repeat

the line mun ber, si nee T saves it. Normally used after 11

or D.

Insert buffer il.ft er line 13 (discard last lin~). Note that

.~1 I is a valid cormnand, but 15 I is not.

microFORTII Technical Manual Page 113

13 D Delete line 13 (place in line buffer). The last line will

be reproduced and other lines will move up as needed. D

should not be applied to line 15; blank it out instead.

Definitions edited into screens may span any number of lines (up to 16). Due to the

fact that a screen is comprised of 8 separate blocks, however, no single word may be

allowed to span between an odd and an even numbered line. For the purposes of this

rule, a II word" shall include both bracketed text strings (described under "Output••)

and parenthetical comments. Subsequent lines of multi-line definitions are

typically indented for readability.

No special action is required to edit a previously unused screen. An unused screen

is filled with undefined characters. You edit in new lines by replacing lines with

text. For example,

11 THIS IS A NEW LINE 11 1 R

puts THIS IS A NEW LlNE in the line buffer and then into the second line of the

screen. This can also be achieved by:

1 P THIS IS A NEW LINE

Note that P and" are ordinary FORTH words, which must be followed by a single blank

before beginning the text. Any line entered by P or II will be padded with blanks at

the end, When you finish typing in lines of the text, you should fill any unused

lines with spaces, A blank line is defined by at least .1HQ. space~ wi.thin quotes:

11 11 12 R 13 R 1i1 R 15 R

fills lines 13-16 with spaces.

Notice that you may string together Rs in this case, because the blank line remains

in the line buffer.

To move a line, you may delete it (D place5 a line in the line buffer) and then use

Hor I. For example:

microFOHTH Technical Manual Page 44

23 SCH I 8 D 211 SCR I 1 H

deletes line 8 of screen 23 and replaces line 1 of screen 24 with it.

Remember that the line numbers are _pyrrent, ordinal numbers. I and D will .t!ill.!.J.JO.l>.QI:

the remaining lines in that screen.

An additional word available in the EDITOR is COPY, which is used to copy all 8

blocks of one screen to another.

Usage: source destination COPY

~xample: 5 105 COPY (Coples screen 5 to screen 105.)

7 .2 Prpgrarg l.,isting Utility:

The PRINTING Utility is used to list source text screens and indices of first lines

of a range of screens. It is loaded with the following command:

PRINTING LOAD

The commands described below are appropriate for use in a printing terminal.

7 • 2 • 1 ~ 1.1 s tings

PRINTING will produce an index listing, which shows the first line of each

screen in a given range of screens.

Generation of an index is specified by the following command:

start end INDEX

where 'start' is the starting screen number and 'end' is the ending screen

number plus one. The index will be formatted 60 lines per page. Should

the range of screens be less than 60 or not an even multiple of 60, the

last page will be partially filled.

roicroFORTII Technical Manual Page 115

7.2.2 Program scr~en listing~

To list an entire range of screens, use the following command:

start end SHOW

SHOW lists sere ens three per page, starting each page with a screen nwuber

evenly divisible by 3, This means that you may replace an individual

page, rather than always having to list an entire application. Only

entire pages will be printed, in sufficient quantity to cover the

requested screen range, Unused screens wl 11 not be listed. On a

partially used page, space will be left for unused screens. An unused

screen, by definition, contains nulls in its first two bytes. Pages with

no used screens will be skipped.

To list a sj_ngle page, use the following command:

scr/J TRil'ID

where 'serf' is the scr een number of any screen on the d~sired page.

microFORTH Technical Manual Page 116

8 . 0 .QY.T.f!JJ'.

Most m icroproccsso1· applications need only r cl.a ti v c.ly simple nwner ic out put. This

chapter describes simple techniques for producing attractive output. Some of these

are included in the standard system; others have been found useful in some

applications and arc offered as suggestions.

8.1 Right-Adjusting Number~

An important capability for numeric output is the ability to right-adjust a number

in a field of fixed width. There is a standard uord available for this: . R prints

a 16--bit integer right-adjusted in a field of specified width. As an example,

30 5 .R prints - - J.Q_

Using this word, all you have to do to print a table of numbers in columns is to set

up a loop for the number of columns desired across the page. The definition of

DUMP, which duinps a region of rnemory when given the starting address and length, is

a good example:

HAU'

DUMP

SPACE SPACE 8 0 DO DUP CQ 3 .R 1+ LOOP ;

0 DO CR DUP 5 . R llALF IIALF 10 +LOOP SPACii: PRO I' .J

You should note in this example the use of IIAU' to pr•i.nt eanh line in two sections

for readability. An example of th is output is provided by Figure 4 . en provides u

carriage return and 1 inc feed. DUMP is available in all systems.

microFOHTH Technical Manu~l Paise 1.17

(' 1 er r::ur,·ir
C EC 9C E.I GF F3 I C I', I Li I t.F t-1 I E:C t-1 I AC Lj I Bu 4 I

10 AL 4 I Ee[t.1 I hE Df I E I E Et-1 E 7fJ 1 E 33 D3 4 [J r,9
?C· LI[P.9 Lt9 E: 3 /.J9 f'.3 30 I D G 2A L12 oE 1-12 22 AD /.J5

30 Fl' l! E 2E 5E 3E 5~ 9L r: r.
'--- L. 52 9A :?E SE f.1 F C 3F LI [J

Lj C :?E 5E ') F 2E SE DF 4 L.15 lJ C 53 UG Cl (: L1 E ED 8D
5[• F Li 1'-T· 35 53 9 [; FC I LC [,F 2 L19 4E 20 G t-19 0
6C fl 1 E Li E 3? lJ E 1 [; DF " /J Li 4F 2C 0 SC 0 6F I E. "--

70 4E A[I E 4E 22 52 3~ D
r, r-
CG 5Z 9F 2Z 52 DF /..j 4C LIF

3C t-1 F 0 f.f'.. C 35 E2 1 2 ,,2 FC F7 3E! 9C 1 2 1 D LF
90 f4 r,r, 52 22 EC .-, " F4 AD 33 9E 9D FF 5D DF 3 LL. J~

AO LIS l! E L, l; (' ~c C r-, 7 1 E /1 E 32 91-1 I D DF s 25 LiC
[30 LJ F C A':: C 55 I E ,~ E E" G 12 fLj I 2 F7 30 88 3 LJ3
co ,, F LJE !J EG LIO [; 3E ((: I G 5A 49 5E: 49 2E
DO SE 95 2[SE [,F Lj 55 53 45 0 C l I /j 0 E BE 6
EC 4C C bA 3C E9 F Li 2E 5E 9C 2E SE CF 2 38 3A 20
FO 0 D8 1 LI 0 E, ~F ,:,

L. DF (, 6 I (:, 4D b b?. 0 [: 22 t~ }{

inicroF'ORT!I Teehnical Manual Page 48

FORTH prov:l.des convenient custom number formatting at high level. The basic

µrocedure assumes that an unsigned 16 --bit number to l>c converted is on the stack.

If a sign is to be attached to the number, a signed copy of the number should be in

the second stack position. Sueccssive digits arc computed ns remainders modulo

BASE, convc rted to ASC 11 characters and µlaced ln an output string. The declining

quotient is kept on the stack, Special characters (such as decimal point) are

placed in the output string between the conversion of the appropriate digits. Note

that the least significant digit is generated first, so the output string is

generated in the reverse order from the way it will appear.

Here are the words for number formatting:

< II

fl

II S

Initializes the number conversion process by resetting the

pointer to the output string.

Converts one digit from an .Qnsigned number on top of the stack

and puts it into an output character string, leaving the

remainder of the original number on the stack. Always produces

a digit whether or not there arc remaining significant digits in

the number.

Converts successive digits until the result is zero. Always

produces fil. least .9_ne digit (0 if the value is zero).

SIGN Tests the sign of the number beneath the top stack item. If

negative, inserts an ASCII minus sign into the character string.

Removes the signed number.

HOLD Inserts, at the current position in the character string being

formatted, a character whose f\SCII value is on the stack. IIOLD

must be used betweeQ <O and O>.

II> Completes nurnbcr conversion by dropping the resident number from

the ~tack and leaving there the character count and address

1nicroFOHTH Technical Manual Page 119

(these arc the arguments for TYPE).

These words are all defined in Screen 12 if you wish to study them.

For example, the word .D is often defined to print an integer with a specified

number of decimal places:

12345 2 .D prints

The definition of .D might be

J)l: (', -r. M A 1.

' . ' 46 HOLD

123.45

: .D <H DUP ABS <II ll> 0 DO /I LOOP 1 ' fJS SIGN II> TYPE

Here <R saves the dee imal places count, while DUP ABS pre pares an unsigned number

with the sign beneath. The word '.' inserts the decimal point in the output buffer.

Note that the digits after the decimal point are generated first, in the DO-LOOP.

All number conversions are made using BASE as the base. Thus, if you had the time

in seconds and you wanted a word which would print hh:mm:ss, you might define it

this way:

• ' · ' 72 HOLD ; OCTAL

:00

.SEC

6 BASE C! ll '·• DECIMAL i J)f-tl'MAL

<I :00 :00 ll I#> TYPE SPACE i

Here changing BASE was all that was needed to get the leading digit of seconds and

minutes to print and carry properly.

You will note the explicit use of the word TYPK everywhere. The implication of this

is that if you want to send your text string to a device other than the terminal,

you may siroply substitute another output command for TYPE. If you are doing this,

you' 11 want to leave TYPE out of the formatting words themselves and put in a

separate definition, as has been done with itself:

: (.) DUP ABS <O OS SIGN U>

: · . (.) TYPE SPACE ;

microFORTH Technical Manual Page 50

Thus, if WRITE were defined to write on some other ASCII device, you could define .W

thus:

• W (.) \/RITE

then

SEC@ .W

would write the value of SEC on that device in ASCII characters.

8.3 .Tux.t. output

Text for titles and remarks is best kept on disk, if disk is available. On disk

systems the word MESSAGE is defined to type out a specified line counting from the

0th line of a screen 23. For example, 16 MESSAGE prints out the Ot h line of screen

24. Messages are printed till the last nonblank character of the line, plus one

trailing blank, Each message is up to 64 characters long, so there are 16 of them

in a screen. Messages are put in the screens using the EDITOR.

If you need titles wider than 64 characters, you may write a definition of TITLE

similar to that of MESSAGE, with a suitable width. Perhaps you would want to add a

CH (which types a carriage return and line feed) before or after the title; since

MESSAGES may need to appear anywhere, there is no CR in the definition of MESSAGE.

For applications for which disk will not be available, text strings must be compiled

into memory. This is accomplished by the word [.

The word [is placed inside a definition followed by text terminated with the)

character. Remember that [1 s a wore! ancl must be followed by a space that is not

part of the text string. The text between the [and the J is inserted into the

definition preced ed by a reference that will cause it to be typed and skipped over.

NOTE: [may only be ill!fil! insige 2. defin itio n.

microFORTII Technical Manual Page '.>1

To see an example of [in use. define

IH<:LI.O? [IIUMBUGI)

then type HELLO? and observe the response.

Due to the fact that a 11screen 11 of source text occupies 8 blocks (sectors) on disk.

an additional rule must be observed ~hen using [in source text: .n .!;Jlx_t,_ string

~ .l! [~~ ll!l.!§_t_ !!Q.t. ~tend acro-13...§. sector boundaries. This means it may

not extend off the end of an odd-numbered line into an even - numbered line.

The use of bracketed text output does not elegantly lend itself to the generation of

strings containing special control characters. The word MSG is used to generate

output strings with special characters in a more visible way. Take, for example,

the definition of CR. whi.ch outputs a carriage return and line feed:

,l~i(
MSG CR 6 c, OD C, OA c. 0 1 0 •
f>l' C "t/1 At-

The 6 gives the length of the string which is explicitly compiled (using C, or ,)

after the definition. The four O bytes are provided as timing characters as needed

by some terminal~.

microFORTH Technical Manual Page 52

9 .o fl)JITtl .PROGRAJ1MING J'ECHNIQ!L&~

Since FORTH is interactive, you will spend much more time at your terminal and less

at your desk than with non-interactive technique::J. You will generally want to write

down some notes about the problem you are about to solve, perhaps, and a few lines

of program. If it is a big problem, you w i 11. want to outline your proposed program

in some detail. Then you sit down at a rORTH terminal and type. Your procedure

will be to enter a definition or two, test them to your satisfaction, and then

combine them to form more powerful definitions, until the problem is satisfactorily

described. To keep your definitions permanently, you may edit them into a screen or

more of a source text which will be kept permanently on mass storage. You may

modify these screens, 103d them, and re-test.

To facilitate testing (and all'Jo to allow mutually exclusive sub-vocabularies to

replace one another), you may wish to marl< a place in the dictionary with a null

defj_nition, so that at ,':IO!lle future time typing FORGET and the name of the null entry

will cause all of the dictionary generated since that entry to be discarded (or

"forgotten 11). Thus, when you begin typing provisional definitio~,, it 1s advisable

to type something like

TEST

Later, when you are ready to reload your test definitions, or if you feel the

dictionary is becoming too cluttered, you may type

FORGET TEST

rnicroFORTH Technical Manual Page 53

and everything entered in your dictionary beyond (and including) TEST's location

will go away. A word may be re - defined as often as you like--the most recent entry

will be the one used thereafter- - but the obsolete entries remain, taking up space.

Alternatively, you may FORGET any normal dictionary entry, agatn discarding that

entry and everything following it.

If the compiler should generate an error message before reading the at the end of

a definition, then you will not be able to forget that definition. This happens

because the name of the current definition is incomplete until it is patched up by

the ; .

By being able to forget collections of words you can create sub-vocabularies to be

overlaid by other sub - vocabularies. The cross - compiler is such a sub-vocabulary, as

is the EDITOR on the COSMAC. You may want to have several, each containing an

application you're working on. In the common vocabulary one will want to give a

name to the first screen of each:

43 CONSTANT CALCULATOR

120 CONSTANT COUNTER

83 CONSTANT IGNITION

180 CONSTANT ROBOT

and at the .fillll of the common vocabulary a null definition:

TASK

Each of these screens will load the other screens that are included in the same

sub-vocabulary. The beginning of each initial screen will contain:

FORGET TASK TASK

The FORG~T TASK will discard any of the other sub - vocabularies that might be loaded

(the null definition of TASK takes care of the case when none is loaded). Then the

new definition of TASK marks the beginning of .tJili sub ·-vocabulary so that it might

be discarded later on. In use, one can change overlays easily by typing:

CALCULATOR LOAD

microFORTH Technical Manual Page 511

or

ROBOT LOAD

without having to worry about discarding an incompatible set of routines.

9 .2 .IHagnostiQ:}.

When you type a definition, or use an untested clefini.tion, or load a newly edited

block, you may get a diagnostlc. Diagnostics arc very simple. There arc only 3

standard ones. The first is

word ?

This means that "word 11 is undefined. '!'hat is, it coulcl neither be found in the

dictionary nor converted as a number. You may have forgotten to define it, or

loaded something which referenced it before it was defined, or simply misspelled it.

The most common diagnostic is

STACK EMPTY!

This means that either the word you typed or one it used expects a parameter on the

stack and finds none (stack underflow).

The third diagnostic is

DICTIONARY FULL!

which is given whenever the top of the dictionary comes wi.thin a certain distance of

the top of the stack. When you receive tl1is message, you should consider such

expedients as placing array/'! in virtu-11 1ncmory (disk), and organizing your

application into overlays.

fORTH checks for stack underflow and dictionary overflow after inLerpreting each

source word of the input stream, either fro1n termi.nal i.nput or while loading a

microFOHTll Teclmical Manual Page 55

screen.

Each of these diagnostics uses the standard abort routine, QUESTION. QUESTION

repeats the offending word and issues a MESSAGE whose number is a parameter to

QUESTION. It then empties both stacks, pushes the current block number onto the

parameter stack, and qutts (i.e., awaits keyboard input). If the error occurr•ed

within keyboard input, the top of the stack will contain a O. If you were loading

screens at the time, you may now type • (period) to find out the block number within

the screen being loaded at the time the error occurred.

You may use QUEST ION for your own diagnostics (provided you have a d i.sk and terminal

in your application) by creating your own error MESSAGE (see Section 8,3) and using

its number as a parameter to QUESTION.

9. 3 Testing

When you are testing a new definition, it is a good idea to type after executing

it to make sure there are no numbers left on the stack except those you expect to be

there. A definition that accidentally leaves numbers on the stack can cause subtle

and unpredictable things to happen in entirely unrelated parts of the program!

Remember the rule that ALL WORDS SHOULD DESTHOY 1'H8IR PARAMETERS AND LEAVE ONLY

EXPLICIT RESULTS.

Similarly, whenever you arc compiling a new definition or loading a newly edited

screen, be sure to start out wi.th an empty stack; then check to see the stack is

still empty when you are done . Extra items loft on the stack are a sure sign of an

IF with no terminating THEN, a BEGIN with no ~ND, or a DO with no LOOP. On the other

hand, assumi.ng the stank started out empty , too 111any F.NDs or THENs will terminate

compilation with n STACK EMPTY! me S/'Jage, The best way to empty the l'Jtack is to type

. until you get the STACK EMPTY l message and then type . one more time to remove the

item left by the error message.

If your definition doesn't work and the examination of the text doesn't reveal the

problem, the standard pro c edure is to type the words which are used in the

definition until something goes wrong. You may monitor the behavior of the stack

along the way by typi .ng out the nurobers on it until it is empty, then typing th ose

mtcroFORT!I Technical Manual Page 56

numbers again to put them back (in the right order I). Of course you must simulate

the behavior of DO, REGIN, or IF structurefJ.

You inay wish to define a word to dump the stack contents non-clestructi.vc] y, thu~i:

? s 'S SO Cl ovgn ~ DUMP

Because DUMP dumps bytes whereas the stack contains 16-bit numbers, you 1oay wish to

define your own DUMP that will output 16-bit values and 11sc it in ?S.

As repeated stack underflows or overflows may be fatal, it is strongly advised that

you test loop contents carefully before running the loop.

Do not try to execute too many levels of untested definitions at once--multiple

errors can so muddy the waters as to make debugging extremely difficult! Test the

lowest levels of new definitions thoroughly before testing words that use them.

FORTH's extreme modularity keeps debugging very simple if you always follow this

rule.

9.4 Top-Down Desi&.n

Although you do test programs--and load them--from the lowest to the highest levels

of complexity, you should try to design and write them in top-down fashion.

Defining a bunch of low-level words that you think 11 should be useful" and then

trying to integrate them is a sure way to waste time and effort! Suppose that you

decide that you want to type

5 PHOTOS

to make 5 photographs with a processor-controlled camera. Naturally, you will want

the definition of PHOTOS to contain a loop in which the key word is PHOTO- -whic}1

takes one photograph:

PHOTOS 0 DO PHOTO LOOP

PHOTO will IF1ve oertaj_n fairly well defj_rrnd thi_ngs to do: open the shutter, time

microFORTH Technical Manual Page 57

the exposure, and close the shutter, for example. So PHOTO might look ljke this:

PHOTO OPEN SEC@ EXPOSURE CLOSE

Here you have introduced a new operational clement, the setting of exposure time

variable SEC. So now the full operational sequence is

10 SEC I 5 PHOTOS

Then, depending on the way the hardware is set up, you might define OPEN and CLOSE

something like this:

OPEN 0 SHUTTER CLOSE 1 SHUTTER

where SHUTTER must be defined to send the specified code to the camera shutter.

The process of generating the definitions necessary to perform an operation tends to

be very much the same as illustrated here regardless of the actual application. The

important things to note here are:

(a} The top-down method of organizing the definitions (even though they

must be tested and loaded in reverse order}; and

(b} The extreme slmplicHy of each level in the process. Each single

operation should be defined separately, and all should be kept as

simple as possible.

Not only will this make things much easier for you during development, the

av;:itlabU . tty of the lower .lP.vel def'initjons will come i.n handy when some

modifications are needed or when there is cquiprnent trouble.

microFORTII Technical Manual Page 58

The dictionary is a U.nked list of variable--length entries. lt ~rows toward high

core and each entry points to the one that precedes H. The beginning of the last

entry is pointod to by the variable CONTEXT. It id entif'ies the head of the chain to

be searched. The next available word is pointed to by the variable ll and roay be put

on the stack by the word HERE.

The dictionary is ~rnarched by following the chain until a match is found or the

bottom reached. This organization permits a word to be redefined, since the latest

definition will be found first.

As Figure 5 shows, the dictionary can be t•ather naturally divided into three parts:

The PROGRAM is pre-compiled (on the same computer or any other FORTH

computer), and contains about 60 defined words from which all other words

can be defined. It is difficult, and normally unnecessary, to change

these words. In some microprocessor systems the program resides in ROM.

The FORTH VOCABULARY is compiled when you load FORTll. It is common to all

applications, and though you may change it as you wish, you probably

won't.

The APPLICATION VOCABULARIES contain those words peculiar to your

applications. You ~,ill be changing, rearrc1nging 1 and adding to these

vocabularies continu~lly during the development process.

1" r· om t h c po in t o f' v i e w o f t h c s ca r c h a 1 go r i th ms , th e s e v o cab u l a r i e s a re

i n d i s t i n g u i s h a b J. c Y o u c a n , h ow c v c r , cl i s t i. n g 11 l. s h t h e 111 - · · a II d o t h e r

rnicroFORTll Technical Manual Page 159

If (ava-<-tabee ~
lll('.1110/tlj) -- __{

____ J
PROGRAM FORTI/ APPl.lCArIO,\/

Figure 5

FOR'l'II Dictionary

.A compil ecl dictionary cont a ins s e gment s of logically r e lat ecl
de finition s , which in turn may he thought of as divided into
three major groups.

BYTE
0

J

2

3

1

5

6

7

8

9

c.h<t1t<tc.l.e1t c.ou11.t

1 ti .t c./1 <tit a c. .t elt

2 11 d c. halt a c..t e/t

311d c.lw1tac..te.1i.

1----------11) J.'.i.11 !2 .to !JI!. e v .
. e n.tit ~/

--1) cod•

+---------!) /·'""""'''" /<.ctd

co11.ti111rn.tioi: 06
:Jall.ame.tu 6ie..td

+

F-i.g1u1.e 6
8-· Bit Dictionary Entry Form a t

CON'l'EX'I'

--.)___..I

microFORTH Technical Manual Page 60

subvocabularies--by being able to discard them. For example, you might discard one

application vocabulary and replace it with another as illustrated in the chapter on

programming techniques. All vocabularies are linked to the central FORTH

vocabulary, which means that a search will start at CONTEXT and thread bacl< to

FORTH, then through it.

The essential structure of all diction3ry entries is the same regardless of the type

of entry (noun s , verbs, etc.). This structure is diagrammed in Figure 6. The first

lt bytes a re called the name L.ield and contain the count of the numb er of characters

and the first 3 characters of the word. Not e that although this gives you far more

flexibility in naming words than a simple limit on characters , it does require

uniqueness i.n the first 3 characters of words of the same length. Note al.so that

.iill..Y. characters you can type on your terminal are valid for use in words being

defined.

The next 2 bytes, called the Jinl< field, contain the location of the first byte of

the next previous entry. This is to facilitate searches, whioh start at the

"r ecent " end of the dictionary and worl< bacl<. This searching order is necessary in

order that the most recent def.i.nition of a \-Jard will be the one used, Al.so , since

in a developed application the user is dealing with the highest level of the

program, it optimizes search time. Finally, although this is less relevant in

microprocessors t h3n in minicomputers, this searching order permits a II tree" of user

Vocabularies, coming together at the trunk FORTH. (See Chapter 11.t.O, VOCABULARIES).

The next 2 bytes contain a pointer to the code to be executed for the definition.

This codfl. address depends on the type of word:

For a CONSTANT, the pointer refers to code that puts the value of the

constant (which is in bytes 8 and 9 of the definition) on the stack (s ee

Figure 7).

For a VARIABLE, it refers to code that puts the 1ddress of the value (byte

8) on the st~ck.

For a : definition, it points to a portion of the interpreter , which will

begin following a string of addresses in byte 8 and continuing until the

which terminated that definition is encountered. A diagram of a

microFORTH Technical Manual

6 I
N I
u I

[M I
I)
D
I 0

1 7

r.i..gu11.e. 1

Dictionary entry for
17 CONSTANT NUMBER

£..<..J!!l lo ,".'.lt2V.
('_ I! 1..lt lj

a.dd11.. o 6 cod I'.

loll. CO.'ISTMlT

Page 61

I 1

I V

I E

L C

I li.11/2 1.o IJll.t'..V.
e.11 .t. 11. lj

I add1t, 06 c.o d ('_
6011. :

I I} add•, o I l 'J
li.-towl Ai G

I A

I I a.dd1t, o 6 Bi\S f

I I add11.. 06

[I a.cld1t. 06 i

Figu11.e. g

Dictionary entry for

: DECIHAL A BASE I

(Stor.cs 12 0 in the parameter field of Bl\SE)_

wicroFORTH Technical Manual Page 6?

definition is shown in Figure 8.

For CODE, the pointer is to byte 8 i.tself, which contains tile beginning of

the code, \lhi.ch i.s simply (!Xecuted cli.recl".ly.

Other kinds of entries have code addt•csscs that point to the appropriate code and

Nill be discussed in Chapter 13.0 (SPRCJ.flL DEfo'INING WORDS).

The eighth and subsequent by tcs are sometimes called the .lli.il'ameter_ .field_, which is

of variable length. CONSTANTs and VARiflBLEs keep their values in bytes 8 and 9 as

noted above. Other kinds of words may keep scvel'al values. .ln the latter cases,

the length of the parameter field is either determined by the type of word or is

kept in one of the eal'ly words of the field.

microFORTH Technical Manual Page 63

11 .o .IJi.E INTERPRETER

Everything FORTH does is controlled by its interpreter. The interpreter itself is

quite small. But it controls several important routines, some of which are

invisible to the user, including number conversions, dictionary searches, generation

of dictionary entries, management of the stack, etc. Some of these functions are

very intricate. In this chapter we will explain what the interpreter does and how

you will use it.

11 . 1 Interpreting .s! String of Words ~ ill. ..tlIB. Terminal

Your main communication with FORTH is through a terminal. You type one or more

words which are interpreted and obeyed. If you have requested something to be typed

out, it will be; whatever you liave requested, FORTH will cheerfully reply OK. The

OK not only notifies you that your request has been satisfied, it also signifies

that FORTH is ready for you to type more commands.

The operations that have been performed before the OK reply consist of the

following:

1) A word is taken from the terminal line buffer, which is also called

the input string. (Remember, a 1'.LQ.Dl is a character string that is

bounded by spaces) .

2) a. If it is a word which can be found in the dictionary, the code

for that word is executed.

b. If it is a number, it is eonverted to binary, using the value of

microFORTH Technical Manual Page 611

the parameter HASE as the base, and pushed on the stack.

c, If neither of' the above 1s possible, the word is sent back to

the uner with a? .

3) Followj_ng BUC<H~ssful cornpl<~tion of ?.a or ?.b, the interpreter

continues on to the nf?Xt word, if any. At the end of the string of

words, i.t says OK. Therefore, you may string together a number of

comrnands and they will be interpreted and executed, one at a tlme.

Th<' actual work of taking a word from the input buffer is performed by the routine

called WORD. WORD places the word, starting at HERE, with the count of characters

in the first byte. This is the same initial structure as the narne field of the

dictionary definitions. The actual work of searching the dictionary is performed by

-FIND.

WORD and -FIND are used by the command 1 (tick), which was mentioned in Chapter 3,

' reads the next word in the input string and looks it up in the dictionary,

returning on the stack the address of the parameter field of the entry if one is

found.

11 .2 Interoreting ~..9J.!.tQg_ ~locks

If you type a load command such as

63 LOAD

the interpreter operates in a slightly different mode, since in the process of

executing the word LOAD it must interpret words in a text screen read from disk or

tape, rather than from the terminal line buffer. It keeps track of what screen it

is taking its LOAD instruction from; the terminal, for this purpose, is 11sc reen 0 11
•

The only difference in interpreter behavior between operating on 11screen 0" and any

other screen is that. only "screen 0 11 gets an OK on completion. Note that just as

"screen 0 11 may load a screen, that screen may in turn load other screens. The

number of the current screen being interpreted is kept in the user variable "BLK".

microl-'ORTII Technical Manual Page 65

Normally this method is used to load (compile) vocabularies into memory. But this

same technique may be used to perform operations which are infrequently performed

and not especially time-critical, and thus not worth allocating memory for.

If the interpreter encounters a command, it will be executed. The defining word :

causes the interpreter to behave in a special way. A colon not only generates the

beginning of a dictionary entry for the word immediately following the colon, it

also sets a flag called STATE for the interpreter. Thereafter, when the dictionary

entry for a subsequent word in the input string has been found, its precedence !U,.t. (

upper, nil .in count field) will be compared to STATE. If the precedence is less

than STATE, the word will not be executcd--its address will be placed in the

dictionary entry being compiled. The use of IMMEDIATE for increasing the precedence

of a word is discussed in Section 5.8.

11 .4 Executing Definitions

The code address for : definitions potnts to a routine which sets FORTH's

interpreter pointer, I, to the parameter field of that definition, and executes

NEXT. (Please don't mistake this I for the I that fetches the DO-LOOP counter or

the EDI TOH' s l.) The intcrpretm'' s I is only referenced in assembler code. NEXT is

the mo:1t fundamental routine of the interprete1· (someti1oes called the inner

interpreter). It is the basic loop that goes on to the next word, controlled by I.

When a : definition is being executed, the interpreter is going down the addresses

supplied in the definition, then going off to execute whatever is at those

addresses. Of course, these addresses ~ight point to other : definitions, and so

on; therefore the code f'ot' : also saves the current I on a special push-down stack

called the 11 Heturn Stack 11 • Ancillary uses of the Return Stack were discussed

earlier. This is the w____im_q,1_'.Y. function of the Return Stack. The code for

therefore, pops I off the top of the Return Stack before returning to NEXT. Of

course, at the top of any of these chains of pc 1 ~ters is a CODE definition, and all

CODE definitions also end by executing NEXT (often after passing through stack

manipulating routines). It is clear, then, that the gretcst overhead in running

PORTH is in this interpreter loop; great pains have been taken to code it as tightly

microFORTH Technical Manual Page 66

as possible. On most microprocessors, NEXT takes 10 or so instructions. It

represents an ideal opportunity for a microcode instruction.

The existence of compiled addresses in definitions is the feature that distinguishes

FORTH from other interpretive languages such as BASIC, which can only interpret from

the terminal or from source, and are therefor e much too slow for many real - time

tasks and complicated computations.

It should be clear from the foregoing that cornpil.in.g a : definition into the

dictionary entails as many dictionary searches as there are words in the definition;

executing a : definition (by typing it at a terminal) involves only one dictionary

search. This is the reason high - level fo'ORTH runs so much faster than purely

interpretive languages such as BASIC.

11.5 1.nnfil: .Interpreter Control

FORTH provides access to the inner interpreter through the word EXECUTE. What

EXECUTE expects on the stack is the address of the parameter field of some

definition. Ther e is no restriction as to the kind of definition it may

be--high-level, noun, or code. What EXECUTE does is to r emove this address from the

stack and direct the inner interpreter to execute/interpret tho definition referred

to. Note that the end result is exactly the sa me as though a reference to the

"executed 11 word had been compiled .in plac~ QI the word EXECUTE.

EXECUTE provide s a simple yet powerful means for implementing flexible control

structures that a re handled with greater effort by FORTRAN- like l anguqges with such

techniques as computed GOTOs and externalized function calls.

The following example illustrates the us e of EXECUTE to implement a transfer vector:

+ VARIABLE fo'UNCTION

MATH DUP +FUNCTION+

- t
I 11

g EXECUTE
' I '

Tile location of the pa rrnnet er f'ield of+ (giv en by ' +) occupies the fi.rst 2-bytc

entry in the table fo'UNCTION. The locations of - 11 and / occupy the second

through fourth entri.c1:1 and are compiled expU.citly using , Typing

mict'oFOHTII Technical Manual Page 67

3 9 2 MATH

would yic ld 27, the product of 3 and 9. Within the definition of MA'l'B, the DUP +

changes the index to a 2-byte index, FUNCTION+ adds this index to the base of the

FUNCTION table, and@ EXECUTE fetches and exe-::!utes the intended word. This ktnd of

technique is especially useful when the function index is a computed value, as might

be the case in decoding keyboard inputs.

rnicrof-'ORTII Technical Manual Page 68

1 2 • 0 1 llli. MlIB.MDJJIB.

~orth can assemble machine-language definitions of words. Among the many examples

of words defined by machine - language instructions are the arithmetic operations:

+ SWAP DROP U11 U/

Such words arc called g___g.9g _g_e(_:iJ1_j__U,.QJl.~ and arc constructed using the asselllbler

command CODE. The assembler is not intended for conventional programs. FORTH code

routines are distinguished by the fact that all encl by returning to the inner

interpreter rather than by executing a conventional subroutine return. The

assembler for your particular CPU is detailed in an appendix to this manual. This

chapter provides a general overview of the assemblers on all FORTI! systems.

CODE entries have a standard dictionary entry with the code address pointing to the

next byte (the parameter field) where machine instructions are assembled.

To compile a colon definition, the interpreter enters a special compi.le mode, in

which the words of the input string are not executed (unless designated IMMRDIATE)

but rather their addresses are placed sequentially in the dictionary. During

assembly, on the other hand, the interpreter rem3ins in execute mode. The mnemoni.cs

of the processor in question 3re defined as words, which, when executed, assemble

the correspo!'lding operation code at the next location i.n the dictionary. As

elsewhere in FORTfl, operands (addresses or registers) precede instruction mnemonics.

Do pending on the processor, several kinds of instructions and acldres!:ling are

possible. These are defined in the f,'ORiB assembler for each processor, to assemble

instructions in the appropriate format, given the mnemonic operation code and

wlrntever additi .onnl parn111eterH are necessary to describe the instruction. Tile

jnstructi.on is o1ssernblecl i.nto the next. avail.cJhle location i.n the di.ctlonary.

1nicrol<'ORTI! Technical Manual Page 69

For example, the 8080 processor has an ALU reference instruction format for

instruct! ons that perform arithmetic computations. The FORTH assembler defines the

command ALU, which is used to define n1neu1onics of the Al,U class, which in turn

assemble ALU reference instructions. For example, the mnemonic ADD is defined on

8080 systems ~y

80 ALU ADD

Then ADD ls an operation which assembles an ALU type instruction whose nwneric code

is:

80 (hexadecimal)

and whose operand will be on the stack. In use,

L ADD

assembles an instruction which, when executed, will add the contents of the L

register into the accumulator.

It is necessary when you are using CODE to separate ln your mind the way you are

using the stack at assembly time and at execution time. The words in 3 code entry

are executed at assembly ti~e to create machine instructions which are placed in the

dictionary to be executed themselves later. Thus,

HERE 2 - TST

at assembly time places the current dictionary l.ocati.on on the stacl< (IIERE) and

decrements it by:?. The resulting number is then the parameter for TST whi.ch

assembles a machine instruction which is the equivalent of

TST *-2

in conventional assembler notHtton. Similarly, such words as SWAP and DUP are

~xecpted at assembly time to manipulate the parameters being used by assembler

words, although they arc ..QQ..m.J.!.i.lg_g_ into tho dictionary in : definitions.

microFOHTH Technical Manual Page '/0

Code must end with a jump to the inner interpretor. This is a special routine

cal.led tH-:XT, because its primary function is to execute the next FOHTII word in a

colon definition, On sotoe proces::iors the jump to N~~XT is explicit:

NEXT JMP

On others, a macro called NBXT is used to assemble the app1•opriate code. Several

words are available to inodify the stack before rctur'ning to NEXT; these are

summarized in Table III. Not all of these arc available on all processors; consult

the appendix for your processor.

12.2 ~otational_ S&nventions

Although the FORTH assembler uses, for the most part, the ;nanufacturer 1 :ci rnnernonics,

there are some standard F'ORTB notational conventions that arc shared by all

assemblers. Fundamental FORTll pointers have standard names:

S Address of top of parameter stack.

W Address of parameter field of the current definition.

I Interpreter pointer.

R Address of top of return stack.

U Beginning of user area.

These arc registers if po ~rni.ble, but may be i.n !ncmory. Hefcr to the append ix for a

discussion of Lheir allocation on your systc111. l·/her·evel' they 111ny be, tllesc n-'\mes

may be used in code to r·efcr to the arens.

In definitions beginning with the executc-ti111e !llclllipulat.i.ons of Lhe stack :1re

r:1 ic rofORTII 'T'Pchn ic,_i 1 Manua 1 Page 71

T J\ BLI~ II 1 .

ASSRMBLEH HETUHN LOCATION&

\fords Used to
Terminate Contents of Stack Stacie
CODE filli..CY. l':xplanation Hcgister .9_ Defore Afifil:

TOP TOP

PUT Heplace top of stack 12 6 12
with contents of
register o.

PUSH Push contents 1 ,, It 1
Hegister 0 onto
top of stack.

POP Discard top of 2 2
stack.

BINARY POP followed by 9 80 3 9
PUT

(Assembler •eturn locations modify the stack and return to NEXT.
PleRse NOTE: some processors use a different register than register 0.)

miorofORTH Technical Manual Page '(2

automatic. CODE, however, requires that parameters be handled explicitly, using S

(the parameter stack pointer) and the code-endinf~ r·cturns that push or pop the staol<

before executing NEXT.

Other standard l•'OH'l'H assembler notation ineludes the rte;ht parenthesis, which

indicates relative addressing when it's by itself, or indexing if combined with an

index t·cgistcr designation.

S) Addressing relative to the top of the stack.

S) Indexed by S.

1) Indexed by register 1.

On machines with automatic incrementing or decrementing, the parenthesis may be

combined with+ or - . On the LSI11, for example,

S)+ Refers to the number on top of the stack, 11popping 11 it off at

the same time; that is, incrementing the stack pointer.

S ..) Refers to the next avaUabJ.e location on the stack, a 11push 11

operation.

Immediate addressing is indicated by O and memory indirect by the right parenthesis

again; the assembler can determine from the address whether) means

register- relative or memory-rclat ive (indirect). In addition, there are specific

items of notation for each procossor--thesc arc described in detail in the appendix,

Parameters may be taken directly from memory, if this is permitted by the

architecture of the processor. The assembler will automatically check to determine

whether the address of the argument permits a short format instruction, and, if it

will not, an extended format wi.11 be used. Often parameters may be picked up

without being na1ned. So long as an address is on the stack, it doesn't matter how

H got there:

mm1-: 55 c, . . . LDfl

miero£t'OHTII Technical Manual Page 73

will enter the constant 55 in the diction3ry and leave its address on the stack at

assembly time. {The operation C, puts the low-order byte of the number on the stack

into the dictionary at HEH~ and increments Fl by 1.) The instruction LDA coming

later will encounter the address on the stack and assemble an instruction to move

its contents to the A register.

12.3 Macros

Macros may be defined easily in FORTH using: definitions which contain assembler

instructions. For example, on the COSMAC one frequently uses the operations DEC and

STR successively on the same register. For convenience, the macro:

DST DUP DEC STR

has been defined. Then S DST will assemble the two instructions:

S DEC S STR

Note the way the DUP in the definition of DST has allowed the single parameter S to

be used by both mnemonics DEC and STR.

But macros are mainly a convenience; DST assembles 2 instructions, just as if you

had written the expression out in full.

12. 4 Example.

As an example or the action of the assembler, consider the COSMAC code definition

for the operator DUP:

CODE DUP

S DST

S LDA

T GHI

T PHI

PUSH

S LDN S DEC

This will reproduce the top number on the stack. The action of the assembler in

constructing this CODE entry is given in Figure 9, The resulting entry is shown in

f'igure 10.

microFORTH Technical Manual Page 711

s

LDA

T

PHI

s
LDN

s
DEC

s
DST

T
GHl

PUSH

Action durin_g assembly

Put 13 (stack pointer register's
number) on stack.
Assemble a LDA instruction
referencing register 1],

and put it in the dictionary.

Put q (temporary work register's
number) on the stack.
Assemble a PHI instruction
referencing register 'I ,
and put it in the dictionary.

Put 1J on the stack.
Assemble a LON instruction
referencing register 13,
and put it in the dictionary

Put 13 on the stack.
Ass emble a DEC instruction
referencing register 13,
and put it in the dictionary.

Put 1 ~ on th e stack.
Assemble a macro: a DEC and a STR,
both referencing register 1],
puttin g them in the dictionary.

Put 'l on the stack.
Ass emble a GHI instruction
referencing register q ,
and put it in the dictionary.

Assemble a macro: S DEC,
S STR and a branch to NEXT.

Figure 9

}
}
}
}
)

Action during execution

Load accumulator with
top byte of stack and
increment stack pointer.

Store accumulator in top
byte of T register.

Load accumulator with
low-order byte on stack.

Decrement stack pointer.

Decrement stack pointer
a nd store accumulator at
byte now addressed bys.

Fetch high-order byte
from T register.

Decrement S, store
accumulator and branch
to NEXT.

Action of assembler
Assembly of DUP on the COSMAC

microFOHTH Technical Manual Page 75

. I 3]

D

u

L p

B J link address

B } code address

S LDA

T PHI I
S LDN I
S DEC I
S DEC } S DST
S STR

T GHI

S DEC

S STR PUSH

(NEXT) F SEP l

Figure 10

microFOHTH Technical Manual Page 76

12. 5 .L_ogical .s.truc tu res

Control of logical flow is handled by FOHTH's assembler using the same structural

approach as high-·lcvcl FOflTH, although the implementation of tlrn commands is

necessarily different. The commands even have the same nmnes as their high--level

analogues; ambiguity is prevented by use of separate Vocabularies (sea Chapter 14).

The fol lowing are i.mpl emented as standard macros:

BEGIN Puts an address on the stack (llRRR).

END Assembles a condition'll jump back to address left by BEGIN. It

is preceded by a condition code. The loop is ended if the

condition is !!l_et. Common condition codes are O= and O<, as

appropriate to the various CPUs.

NOT Negates condition code.

IF Assembles a conditional forward jump, to be taken if the

preceding condition is false, leaving the address of this

instruction on the stack,

ELSE Provides the destin'ltion of ff's jump (whose address was on the

stack) and assembles an unconditional forward jump whose

location is left on the stack.

THEN Provides the dastin'ltion for a jump instruction whose location

is on the stack at assembly time (left by IF or ELSE).

The ELSE clause may be omitted entirely. This construction is functionally

analogous to the IF ..• ELSE ••• THEN construction provided by l~ORTH's compiler. For

instance,

O·· IF (code for O)

o~ IF (code for 0)

ELSE (code for not O)

THRN ...

THEN ...

microFOHTH Technical ManuBl Page ·n

Since the locations or destinc1tlons of br,rnches are left on the stack at assembly

time, the structures BEGIN •.• END and IF ... ELSE .•• THEN may be naturally

nested. However, by rnantpulating the stack during assembly, the programmer can

assemble any branching structure. If you wish to branch for~rnrd, use Ir' to leave

the location of the branch on the stack. At the branch's destination, bring the

location back to the top of the stack (if it is not there already) and use ELS~ or

THEN to complete the branch by filling in its destination at the location on top of

the stack. If you wish to branch back to an address, leave it on the stack with

BEGIN. At the branch's source, bring the address to the top of the stack and use

END or a jump mnemonic to assemble a conditional or unconditional branch back. Be

sure to manipulate the branch address before the condition mnemonic as the condition

codes add one item to the stack.

Suppose, for example, you wish to define a word LOOK, which takes a delimiter on top

of the stack, and a starting address under it, and scans successive bytes till it

finds either the delimiter or a zero. The number of characters scanned is returned.

Here is a definition of LOOK for the 6800:

B PUL

0) TST

A PUL

0= NOT IF

TSX 0) LDX CODE LOOK

BEGIN

0 A CMP 0= NOT ff B lNC

PUT JMP

ROT JMP

THEN THEN A CLR TSX

Here the two phrases O= NOT IF assemble conditional forward jumps which will be

executed if the character scanned is the same as one of the delimiters. If the

loop is to be repeated, after incrementing B we must JMP back to the BEGIN. The

intervening IFs have left their locations on the stack, so the branch must be

assembled by ROT JMP. The ROT, executed at assembly time, pulls the address left by

BF.GIN to the top of the stack where i.t is used by JMP as its ctestin;.iti .on. Finally,

the TH~Ns fill in the destinations of the IFs.

There are no labels in FORTH. You could define them, but their function is better

performed by the CODE names IF, ELSE, THEN, l3l~GIN and END. Since CODR definitions

are usually extremely short, labels at'c not particularly desirable; they tend to

encourage complicated flow patterns that are not appr•opriat(i in FORTH.

Some processors permit you t o use lit e r a ls directly in code; on these, ,CODE is

rnicroFORTH Technical Manual Page 78

rarely encountered.

12.6 Devi ce Handlers

Device handl ers should be kept extremely short, including only the instructions

required to pass a value to or from the s tack or to issue a command. Consider, for

example, a self-scan character display which is interfaced to a COSMAC as device 2.

This is all th at is needed to output one character from the top of the stack:

CODE DISPLAY S INC S SEX 2 OUT NEXT

In this example, S I NC increments the stack pointer (to get the low-order byte), S

SEX sets S as the output register, and 2 OUT sends the character to the device,

incrementing S again to complete a POP.

Given the definition of DISPLAY, you can then define TYPE at high level to display a

string of characters whose byte address and length are on the stack.

TYPE 0 DO DUP C@ DISPLAY 1+ LOOP DROP

To convert and display a number on the stack, you might define PRINT:

PRINT (.) TYPE

Here (.) performs the conversion, leaving the address of the resulting string and

its length for TYPE (see Chapter 8.0, OUTPUT). The point here is that, gi ven the

sim ple code definition DISPLAY, you have eas y, full control of the display in

high-level FORTH.

12.7 .11.nill and Memory Trade-Offl:l

It should be clear by now what the relative trade -o ffs in time and memory efficiency

are between CODE and : definttions. CODE will be almost exactl y comparable to

conventional assembler code, with some advantage due to the handy convention of the

stacl<, which saves the time r.1ncl complexity involved in param e ter passing. On the

rn icroFOHTll Teclrn ica 1 Manual Pae;e 79

other hand 1 : definitions are very much more compact, being only a string of

addresses of previously d<~fincd words. The co111bination of CODE and: def'initions

means that the overall progra111s will be ext1·e111ely comp;~ct, as even short code

strings will rarely be repeated,

Suppose, for example, you h,we Hn 3-byte code string that pc~rforrns a useful

function. It may at first glance seem ridiculous to double its length by making a

dictionary entry out of it, but since every subsequent reference to it takes one

word, it will take very few uses to recover the cost, and from then on you will save

6 bytes for every usage. Furthermore, in :i cross-compilP.d application, the space

cost of the original definition ts reduced to only 2 bytes plus the actual code!

Clearly, the saving 1,iill be greater for longer stri.ngs. However, you should only

perform a single logical operation in one CODE definition,

microFORTH Technic~l Manual Page 80

An important aspect of FOHTII is its ability to define new words. New definitions

and code are devised frequently. Likewise, new constants or variables may be

crec1ted. A more challenging c1nd significc1nt creativity, however, is involved in the

definition of new Kind~ of words. Neither: definiti.ons nor CONSTANTs nor any other

kind of common word, these can share the attributes of both nouns and verbs. Some

special defining words are available to enable the user to develop these new kinds

of words.

The identity of a FORTH word is established by the first 6 bytes--the name and link

fields. The ~haracter. of the word, th::i.t is, the way it will beh3Ve when used, is

determined by the next? bytes, Hs code address. So far we have considered the

generation of all of these bytes to be a single function. Now we shall consider the

management of the code address as a special activity.

A word which constructs a dictionary entry is called c1 defining word. The roost

basic defining word is CREATE, which installs the name, link and code address fields

in the dictionary, leaving the code address pointing ahead to the first byte of the

parameter field. CREATE does not actually reserve any bytes of parameter field,

however.

The FORTI! program 3lso supplies the defining words : and CONSTANT. A few more are

built in from these, of which the most frequently used are CODE and VARIABLE. These

themselves are defined so that they first use either CREATE or CONSTANT to construct

the diction::i.ry entry for new words a nd then replace the code address with another

that will reflect the special behavior of the new kind of word (e.g., VARIABLE).

rnicrorORTI! Tcchni.caJ. Manual Page Ul

The wot'd i CODE enables the user to create new classes of words by specifying the

custom code for the code address of the words of a class. I.et us exa1nine the

definition of VARIABLE in detail, in order to understand this process so that you

may generali'l.c from it, We will have to keep ~iell in rnind that there are 3 moments

in time ~,hich are of interest: the time when the word VARIAIJLP- is Q.Q.f..iJl_ed, the time

when VARIABLJ<~ is _illLecuted to define a new ~rord, and the time when a word defined

by VARIADLE is .i!L'ffiked to push the address of the parameter field of the word onto

the stack.

The definition of VARIABLE for the 8080 microprocessor is:

VARIABLE

W INX

CONSTANT ;CODE

W PUSH NEXT JMP

When thi.s definition is compiled, it produces the entry shown in Figure 11. Given

that definition, the phrase

0 VARIABLE M

will execute VARIABLE to construct a dictionary definition for M. 1'he code address

of M will point to the first instruction after ;CODE in the definition of VARIABLE.

The execution of VAHIABL~ to compile M performs these steps:

CONSTANT

;CODE

reads the word M from the input message buffer and

constructs a dictionary entry for it. The code

address points to the code for CONSTANT, and the

parameter field is initialized to tl1e value on the

stack, in this case 0.

completes the entry for M by replacing M's code

address with the address of the word immediately

following the ;CODt in the definition of VI\RIAUL~;.

i.e., with the address of the INX instruction.

The key word in the definition above is ;CODE, which immediately precedes assembler

microFORTH Tec hnical Manual Page 82

8

V

A

R

1---- link ---1

--1} code address

:::=======.·
F coNSTANT j
E ;CODE- I

I w GLO I<::

I ~ ~~~ I} s OST

w GHI I
S DEC }
S STR PUSH
F SEP

Figure 11

M

1- ,ink

- code address-

1--- o--

Compilation of VARIABL E and the definition:

0 VARIABL E M

microFORTII Technical Manual Page 83

code. WhP.n VARlABLL-; is executed j_t performs the function of resetting the code

address of the word being defined to that of the code which imrnecHa tely fol lows the

;CO!m.

Note that the code phrase following ;CODE is not executed at the time Mis defined.

Rather, when Mis s,::xecuted, the inner interpreter will jump through M' s code

address to the INX instruction. At this time, the system parameter W will contain

one less than the address of the parameter field of the word being executed (that

is, M). (The exact offset of W from the parameter field is processor-dependent;

consult the appendix for your CPU.) The W I NX instruction increments this address

so that it will point to the location which contains M's value (the parameter

field); W PUSH places this address onto the stack; and NEXT JMP returns control to

the inner interpreter.

The definition of what VARIABLE does is the same on all FORTH processors.

The key features of this technique to remember in order to define other kinds of

words are these:

USE A PREVIOUSLY DEFINED DEFINING WORD TO GENERATE THE DICTIONARY ENTRY.

The most frequently used is CONSTANT, which initializes the parameter

field. You may also use CREATE, which takes no parameters, or some other

word with similar properties.

USE ;CODE TO END Tl-IE DEFINITION AND PLACE I MMEDIATELY AFTER IT THE CODE

YOU WISH TO USE TO CHARACTERIZE THE NEW CLASS OF WORDS.

REMEMBER THAT WHEN YOUR CODE WILL BE EXECUTED, W WILL POINT TO T~E ADDRESS

OF THE PARAMETER FIELD OF THE MEMBER OF THE CLASS. Depending on the

processor, W will contain the address of the parameter field minus 0, 1 or

2. Consult the appendix for your CPU.

Here are some examples of words that have been useful in certain applications.

microPORTH Technical Manual Page 8!1

1 3 . 1 • 1 .Y_ECT_QJl

V~CTORs are useful in applications that have a lot of 2- or 3-dirnensional

variables, such as X-Y coordi.nates, 1.ati .tude/longitudc/bearing in

navigational systems, azimuth/elevation, etc. Reference to ~ vector

places one of the values on the stack, selected by the i.ndex. That is, if

we defined:

0 CONST/INT X 1 CONSTANT Y 2 CONSTANT Z

3 VECTOH SCALI':

He have a VECTOR named SCALE, of length 3. We can get selected values as

follows:

X SCALE C@ or Y SCALE CO etc.

The code for VECTOR expects the index on the stack and automatically adds

it to the address of the beginning of the parameter field of any word

defined using VECTOR. Here's how the code for VECTOR mi.ght look on the

8080:

VECTOR

W INX

13.1.2 /IRRAY

CRE/ITE H -1-!

H POP 'rl DAD

;CODE

HPUSH JMP

ARRAY dP.fines an 1rray in memory. When referenced, the index into the

array must be on the stack; it will be automatically applied just as for

VECTOR above. Here's an example of its use:

10:::J ARH/IY DATA

: RECORD 100 0 DO A/DI DATA C! LOOP

This rends lO'J numbers from an A/D converter and stores them in the array

DATA.

m lcroFORT!l Technical Marnrn J. Page 85

The code portion of the definition might be the same QS for VECTOR.

Aecause this only handles byte indices, however, arrays containing 16-bit

data might double the index before adding i.t to the base. The first

portion of the definition might initialize the array to all zeros:

ARRAY CREAT~ HERE OVER ERASE H +! jCODE

W INX ••• etc.

Here CREATE is used to create the basic entry and the phrase !!ERE OVER

ERASE clears as many zero bytes as there are to be entries in the array.

II +I encloses them into the dictionary by incrementing H so that the next

definition will begin after the requested displacement.

13.2 .l:i.igb;-level Definin_g ~ords

It is also possible to define deflning words entirely in high level. This can be

done using <BUILDS and DOES>. The form of such a definitton is

[name] <BUILDS [words to be executed at compile time]

DOES> [words to be executed as the definition of the defined word]

An example is

: MSG

HEX

<BUILDS

MSG SPACE

DOES> COUNT TYPE;

1 C, 20 C, DECIMAL

MSG i.n a defining word, used to defi.ne words whi.ch will output ASCll strings. SPACE

is such a word def.i.necl by MSG, to output a single space. The ph1·ase 1 C, 20 C,

constructs an output string, consisting of a character count (1) and an ASCJl blank

(20), in the dicti.onary. i"igure 12 contnins a diagram of Lhe dicl:.ionary entries ro1•

DOES>, MSG and SPACE.

As with ;CODE defining words, there arc two executions to distinguish: when MSG is

executed to define SPACE, and when SPACE itself is executed. The high level

definitions of both are found in the defini . U.on of MSG. DOES> marks lhe end of

mi croFORTH Techni ca l Manual

s I
D I
o I
E I

machine E
dependent

codo

Pa~e 85 ,

.-- 3 L._ .. __ __, ,-- M
I s
LG I
t==-liok=i
E---= I
~~
l- DOES)-1
EcouNr=:jE-
E-rvPe=J
[-; -=-3

Figure 7 2
Compilati on of DOES>, MSG and :

HEX MSG SPACE l C, 20 C,

s
s
p

A

20

microfORTH Technical Manual Page 86

MSG's execution. The remaining phrase (COUNT TYPE ;) is executed whenever any word

de fi.ned by MSG (such as SPACF.) j s invoked.

The rtcfinition of RUlLDS> i.s just

<flUJLDS 0 CONSTANT

This creates a dictionary entry and reserves two l>ytes of parameter field, Later,

DOES> wi.11 store an address in these two bytes, The output string of SPACR (which

is explicitly compiled ns C, 20 C,) begins ancr this address, that is, i.n tl1e

third byte of the parameter field.

DOES> terminates the execution of MSG. The succeeding phrase (COUNT TYPE;) will be

executed by SPACE. However, before this phrase is executed, the address of tlw

third byte of the pc1rc1meter field will be put on the stack. This is, or course, the

starting address of the output string. This address will serve as the argument to

COUNT, which proceeds to set up the parameters of TYPE.

The definition of DOES> is

DOES> R> CURRENT e (1 n ·•· ;COD~

followed by code to be described shortly. In the above definition, n is a

processor-dependent literal such that CURRENT I! (! n + is the <'tddress of the

parameter field of the mo st recently ereat ed entry, in this case, to the O compiled

into !::5PAC E by <BUILDS. (CURRENT is d cscr ibecl in Ch<1pter 14 .O, VOCABULARIES) The

effect of the phrase

n> CURRRNT ~@ n +

is to s3ve the ;iddres.~ of the phr.:i.se COUNT T'iPE; in the first two bytes of the

para.met.er field of SPACE. Also, this removes the top of the return stack, in effect

terminating the execution of MSG.

Later, when SPACR is invoked, the ;CODE phrase of DOES> will be executed, This code

phras~ does three things:

microFORTll Technical Manw.11 Page 87

1. Saves the interpreter pointer on the return stack.

2. He sets the interpreter pointer with the address in the first two

bytes of the parameter field of SPACE, i.e., with the address of the

phrase COUNT TYPR; .

3. Pushes the address of the third byte of the parameter field of

SPACE on the stack. This becomes the argument of COUtlT.

Another useful MSG is CR, defined in HEX by

MSG CR 6 C, DC, AC, 0 , 0

The character count is 6, D and A are the ASClI codes for carriage return and line

feed, respectively, and the It remaining null characters sent whenever CR is typed

are required for timing in some terminals and printers.

An ex tens ion of MSG which reads a string of text and gives it a name which may be

used to type it out is STRING, defined (in decimal) by

STRING MSG 92 WOHD HERE ce 1+ H +!

MSG sets up the initial definition, as above. 92 is the ASCII code for\ , \.1hich

WORD takes off the stack as its delimiter. WORD puts the characters typed at the

terminal following the name, until the occurrence of a \ , into the diction3ry at

HER£ but it doesn't advance H. HERE CO 1+ gives the length of the string, including

the count byte. The H +! increments H by this value, thus enclosin~ the string in

the dictionary. To use STRING, consider the definition of a word ERROR:

STRING ERHOH UADII\

Thereafter use of the word ERROR would cause BAD!! to be typed out.

Norn: D~~FlNITIONS SUCII AS nrns~~ Alm 1-/ASTF:FUI. Of MEMOHY I ~~SPECIALLY FOR

LONG TEXT STRINGS. On disk systems the use of MESSAGE, \~hich

keeps its text on disk, is preferred. This is, however, a good

way to handle messages in applications that will not 11ave a

microFORTII Technical Manual Pag€ 83

disk.

Another example of the use of <BUILDS and DOES> is the defining word FIELD, which is

used to define fields in a data block on disk:

I.<' IEI.D < OU.I I.DS C, DOES> cg BfJ [! BLOCK +

Note that the word C, appears between the ref'erences to <BUILDS and DOES> in the

above definitions. <BUILDS and DOES> c.1re separate words for essentially this

purpose, to allow the user to specify the implicit compilation of any size field to

follow the definition being created before that definiti.on i.s cornpleLed by DOES>.

In this case C, compilc1s in the BLOCK offset that is late1· fetched by the Ct! •

. Remember that words appear.i.ng between <BUILDS and DOES> will be executed when the

new word is defin_~d, whereas those words following DOES> are executed when the new

word is used.

Given this definition, you might define FIELDS thus:

0 flELD NO. 1 £<'1ELD KIND 2 FIELD VALUE II FIELD OFFSET

etc. In use it is assumed that [3/J is a VARIABLE containing the nurnbet' of some dala

block. Then VALUE would fetch the address of the third byte of the block (in this

case VALUE is assumed to be double length) c.1nd OFFSET would fetch the c.1cldress of the

5th byte. This b ;rnj_c concept can be expanded to some elaborate data file management

capabilities.

Consider an alternate definition of VECTOH (with X, Y, an:l Z defined as above):

VECTOR <BUILDS DOES> +

and the definition of a VECTOR:

vr~CTOR CORNEl1 100 C, II'.) C,

(Typing X CORNER CU puts 100 on the stack ~nd Y CORNRR C~ puts 40 on the stack.)

A comparison or this definition of VECTOH with the fl.rst one exhibit:-, tlle major

111 ic roFORTil Tr.chn ic;3 l Manual Page 89

differences between DOES> an:-1 ;COOE, namely that the use of high-level £i'OR1'11

following DOES> is often more convenient than supplyi.ng code to follo1,i ;CODE. Tt1j_s

method is also more machine independent.

llopefully, it has bt~en shown that different kinds of words may be usefully defined.

Basic F'ORTH provides only CONSTANT ;incl VARIABLE, but standard dcfinitlons of most of

the words discussed here are available. If you encounter more than one instance of

a p3rticular kind of word, or use such a word rrequently, it can pay orr in

convenience, efficiency, and elegance, to name and characterize those properties

·that make it unique.

1nicroFO!rl'll Technical Manu3l Page 90

So far we have considered Lile f•'OHTII di . ctj_onar·y as a ~ingle threaded list of

definitions of various types. Actu3lly, the dictionary is branched from a central
11trunk 11 and several subsidiary vocabularies may be linked into this trunk.

Multiple vocabularies provide several advantages:

1. In a complex application, dictionary search time is reduced

substantially. This is mainly significant in reducing the time

required for loading.

2. Security is enh,rnced by denying access to sensitive commands by

isolating them in separate vocabularies. The vocabulary name acts as

a key, and may be kept secret.

3. Similar operations in parallel portions of an applicaU.on may be

given the same n3me 1 without internal confusion. Judiclous use of

this capability may mal<e complicated applications much easier for a

user to learn.

/Is you might expect, FORTH is the name of tl1e 11 trunk 11 vocabulary. All other

vocabularies arE'. chained to FORTB, that is, after a vocabulary search is exhausted,

FORTH will be searched starting at its most recent definition.

Two other vocabularies :ire defined in the basic system: ASSEMBLER contains all

~rnsembler instruction mnemonics and other assembler directives, and EDITOR contains

comrn~nds to the text oditor.

microFOHTll Technical Manual Page 91

The use of the name of a vocabulary sets the v~riablc CONTBXT to the j)e.Jl..Q_ of the

sub-vocabulary th.1t will begin a di.ctionary search. CURRENT specifies the

vocabularies into which new definitions will be linked.

The word used to define a new vocabulary is VOCABULARY.

VOCABULARY TESTING

defines a new vocabulary named TESTING. TESTING itself is defined in the vocabulary

to which CURRENT was set Hhen it was defined. To enter <lefiniti.ons in this neH

vocabulary, you need to say,

TESTING DEFINITIONS

Here, T~STlNG set CONTEXT to TESTING, while DEFINITIONS set CURRENT to CONTEXT.

Remember, CONT8X1' specifie-1?, .whicJ1 .Y_Qpabulary YQJ.!. are sear..£.h.in.g, and CURRENI

specifies .im.1Qh vocabulary new definitions liill.. be .fil!1 in.

Some deftning words affect CONTEXT:

CODE sets CONTEXT to ASSEMBLER

sets CONTEXT to CURRENT

This has certain consequences which may not he immediately obvious. Suppose you

say:

TESTING DEFINITIONS 0 VARlABLt S

CODE CHECK S O LDA

Ala~, since CODfi: set CONTtXT to ASSEMBLER an~I S was defined in TF.:STING, you have

referenced the ASSEMBLER S { stack pointer) rather than the Vi\Rifll3U: in TESTING. '!ou

have to obtain the address of TESTING's S before entering ASSEMBLtH:

T~STlNG DEFINITIONS O VARIABLES S

CODE CHECK O LDA .•.

Here you fetched the address of S before changing vocabularies. That address is

microVORTH Technical Manual Page 92

waiting on the stack for LDA.

As CODE leaves you in ASSEMBLER, you will not be able to find any word in TESTlNG,

(for instance, by typing it) after defining C!lF.CK. You may either reset your

previous CONTEXT or else follow the code by a : definition (which will res e t it

automatically). CONSTANT and other defining words don't change CONTEXT.

There is no requirement that vocabularies be contiguous in memory. In fact,

ASSEMl3LL-.:R and early FORTI! arc quite interlaced. FORGET (which fo: ~\ets all

dictionary entries subsequent to the one whose name fol lows FORGET), howe -ver, will

"forget" in~ spatial s, .•,1s ... i,11J.:,., ·if y,·111 1ni ·:, L'··· ,'.,;'i1itions of several

vocabularies, you must forget all of them at once. Consider:

VOCABULARY RED VOCABULARY BLUR

RED DEFINITIONS

BLUE DEFINITIONS

FORGET BLUg is incorrect and will prevent further dictionary searches. HED's

definitions have been discarded, but RED' s pointer which initiates the search has

not been updated. On the other hand, FORGET RED will forget BLUE as well.

Any word (and all following words) may be forgotten, _p_r.Q..'Lidin__g 1J1.? . curnrnN..I.
Vocabulary is that in which tJl.e \:1.9rd was defined. FORGET sets CONT£XT to CURRENT.

You can make a Vocabulary IMMEDIATE when you define it. For cxampl8,

VOCABULARY VECTOR

VOCABULARY COMPLEX

Then later you may def.inc

IMMMEDIATE

IMMEDJ/1.TF:

m icror'OHTII Technical M:rnual Page 93

OPEHATION VF:CTOR + COMPLEX 11

~~ich will compile only two words,

+ from the VECTOR vocabulary

and

* from the COMPLEX vocabulary

The vocabularies that are resident in standard microFOHTH are diagrammed in Fig. 13,

The organization shown is logical rather than spatial. The circles show the actual

definition of the vocabulary, with the dashed lines indicating the linkage from the

definition to the head of the vocabulary referenced.

microFOHTH Technic al Manua l Paf~e 9 'I

,+; ASSEMBLER

I
I

I
\

'
EDITOR

\
\

\ I

\ I
\ I
\

,,, -,
/

I

\ / I
\ / I

\ I I
\ I I

\ I /

\ I ---
/

~
I \
I \ FORTH

\

\

\ ' \
\

' '-

Figure 1 3
Diagram of Vocabularies in rnicroFORTfl

1oicroFORTB Technical Manual_ Page 95

15.0 J'J::ili_ CROSS ..COMPILER

The cross compiler is best understood in terms of its differences from and

similarities to the operation of the normal resident compiler. For this reason it

would be well to delay reading this chapter until you have acquired a working

knowledge of the normal compilation process by actual experience.

15.1 Explanation of Terms

Before proceeding too deeply we should establish a common understanding of some

often used terms.

15.1.1 ~ross Compiling

Dy cross compiling we mean the generation, on one system, of code clestinecl

to be executed on another system. The destination CPU may be of a

different type than that of the development system, but within the context

of this manual it will be assumed to be always the same.

The function of the resident compiler is to add new definitions into the

development system, so that they become immediately executable, even

before the compilation process has come to rest. J.n contrast, under• the

cross compiler, the entire application must be compiled and transferred to

its intended system, before any portion of that application can be

executed. This corresponds to the meaning of the term 11compilation 11 in

the context or conventional programming. On fORTll systems "compilation"

has always implied an immediate, intcr;icti.ve process in which each word

microFOHTH Technical Manual Page 96

compiled becomes an intcgr~l element of the development system itself.

There are three p1•incipal di.fferences b e tw e en c ompiling and cross

compiling:

1. The product of the cross compiler is built i.n virtual memory on

disk. allowing it to oc cupy locations in address space that might be

occupied by the development system softw 3 re. This .is the principal

reason that the cro s s co1npiler's output cannot be execut e d until it

reaches its destination hardware .

2. The output of the cross compiler does not cont a in the names of the

words defined. nor the links that would allow the generated program

to search its dictionary at execute time. This is a signif'icant

compression of the already compact definitions provided by the

resident compil e r. on the order of 10 to 30%.

3. The output of the cross compiler does not contain the FORTH text

interpreter, re s ident compiler, di s k and terminal support, or other

routines concern e d with supporting an interactive system. It is

instead suplied wi tt1 a 5 12 byte s ub s et of the F'ORTil system composed

of the address interpreter and A vocabul a ry of e ssenti~l words.

15 .1 .2 Th~ Target ~stem

The target §3.St.em (or _target . ..Q....Olflpute_r) is the system on which the software

under development will eventually reside . Within the cross compil e r, th e

word "Target" is applied to two different. but relat e d enti.ti es: th e Targ e t

Dict_ _ionary, and th e Ta rget Vocabul a ry. The Tar g et Dictionary ref e rs to

the virtual memory on disk into which the application is c ompiled, and to
. t) e.~.

the c ompi l cd pr ogr a ui th a t res 11\ tne re. The Target Voe c1bu Lary i s a formal

Vocabulary as descrlbcd in Ctwpter 111 .0 (VOCABULAHIES).

The Target Voca bul a ry occupies developrncnt s ystem di c t.ion~ry 11/IM 3nr.l

contains execut a ble definitio:,s. In fa ()t all. deftni.tions arc execut a bl e

in that they cont a in ;i c ode ad d r os s (s ee L he c ha pter 11 FO nn1 Di c ti on 3 ry

tnicror'OHTll Technica 1 Manu;1l Page 97

Structur•e 11). The purpos e of the entries in the Target Vocr1bulary is to

retain the n3me of e ach word compiled into the Target Dictionary and its

loc cJt ion in ta rgc t me1110 ry . The word TARG~T is th c name of the Ta rg ct

Vocabulary.

15.1.3 1he Host System

The host system is, of course, your development computer. Wi.th1.n the

cross compiler the word HOST is the name of the Host Vocabulary. The

Host Vocabulary contains the cross compiler itself. It is distinct from

the FORTH Vocabulary for an important reason. The majority of the words

within the Host Vocabulary arc redefinitions of words that occur in the

FORTH Vocabulary. The Host Vocabulary red e fines sucl1 words as:

fl HERE VARIABLE

(and the entire assembler). In general those words which are used in

~'ORTH to describe, build, or modify a definition, must be redefined in

HOST to perform an analogous function for the Target Dictionary.

The !lost Vocabulary exists separate from FORTH in order to maintain the

acccssability of normal FORTH words during th e compilation of the cross

compiler. Visu a lize for a moment the proc ess of building the cross

compiler. As more and mor e compili.ng and defining words arc given new

interpretations (thus burying their previous definitions) it occasionally

becomes n ecessa ry to slip beneath the new meaning of a word and use the

older, resident compiler version in order to properly create some element

of the cross compiler. nils i s the reason that the word ~'OHTII is

lMMfWIATE (see Section ').ti). lt may be used within a definition to ef fect

an immediate context, s witch back to the l•'ORTH meaning of a .,.,ord.

The heart of a c ross compiled program ls c~lled the Nucleus. The Nucleus

contains the FORTI! address interpreter and the definitions of a small but

1nicroFORTI! Technic~l M:n1ual Page 98

cruel.al set of words. The most iroport;;rnt words 1,1j 11 be Urnsc t11at ~upport

litP.r2.ls, .loops 1 and conditional br,rnches, Also included is the code to

support the definitions of CONSTANT, USEH, VAHlABLF., ' 'I and DOES>.

Several other words are included but the liHt will vary somewhat between

different computers in the interest of limiting the size of the Nucleus to

512 bytes on all machines. The words in the following list, however, can

always be assumed to be present:

g

+!

+

<B

0=

EXECUTE

n>

15. 1.5 l)cf'inine; Y..J3. ~ilinf!:

u It

AND

I

Ct

U/

MOVE

0(

Many times in the following chapters rereren~e will be made to the terms

11defining words 11 and 11 compiling words 11 • These terms are not

interchana;able. They are meant to refer to two distinct, and probably

mutually exclusive, dictionary construction activities that a word might

be enga~cd in. The terms are distinguished by the portion or definition

construction for which they arc responsible,

Tt1e domain of a defining word includes the name field, link field, and

code address of fl definition (collectively referred to as the 11head 11}. In

rnany c-:1ses, a dcfinin,g; word will have responsibility for initializing the

parameter field, as in the case of CONSTANT or VOCABULf\RY. Tt1e lowest

kvc>l dcfintng words arc CREATE, ;CODE and DOES>. Any definition which

refers to a defining word is itself a defining word. Defining words are

not IMMEDHIT£. !1 f,3frly complete list of words would include (aside from

the ASSEMBLEn mnemonic defining words):

CREATK CONSTANT

U.S~~H

VAHIABLE CVAH"J ADLE

<BUILDS

t-1SG VOC/\BULf\HY COOR

DOES>

;CODE IMMWI/\Tfo:

roicroFORTl1 Technical Manu~l Page 99

The domain of a compiling word is anywhere within the parameter field of a

colon definition. In order to effect such 3. definition c1 compiling word

must be IMMEDIATE. The nnjority of compiling words make r«:'ference to the

word \ (see the 11Compiler 11 chapter) but that is not a requirement. The

primary distinguishing feature of a compiling word is that it will always

be IMMEDIATE. The converse is also true; if a word is IMMEDIATE it must

also be a compiling word. (It will certainly never be compiled.) Some

words that are technically compiling words arc also usable outside of a

definition. FORTH, BEGl.N and (are such words.

It was stated earlier that compiling l:ll1d defining words were mutually

exclusive. An apparent exception is ;CODE. ;CODE was previously declared

to be a defining word. It is also obvious from its definition (in screen

4) that it is a compiling word. On closer inspection however, it can be

seen that there are actually J;,.wQ ;CODE words. The older, defining word is

compiled into a definition by th e latter, compiling version.

In a typical FORTH application, the user will not define any compiling

words of tlis own, and only a few definin ~ words, if a ny. The cross

compiler has been constructed, as inuch as possible, to make the cross

compilation of all other words transparent to the user . Techniques f'or

handling user 1~ritten compiling words l:ind defining words will be discussed

in the chapter, "Extending the Cross Compiler. 11

15. 2 .Q.rganizing an !.ru1lJcation to be Q:oss Compiled

In any FOHT!l application it i.s i111portant to or·ganL~e the loading of your dcfinitl.ons

in a single screen. A "load s c1·ecn 11 i R a sc r•een wllose primary funct1on is loading

each application text screen in the desired co mpiling sequence. It should have few

additional responsibilities. Screen 3 on your systc111 ells\< i.s such a :a,creen.

(Screen 3, however, does include mm·e definitions than a cr o ss compiler load scr·een

would.)

The U3C or a load screen is good programming practice. It organi;i;cs into one

visible spot all or the blo c ks to be loaded for an application. Tills eoncentr·ates

and segregates the load function into a small area, away f'rom the actual

microFOHT!I Technical Manu,11 Page 100

definitfons.

When the application has been tested ,rnd is ready to be cross compiled, you 1:1ust

provide a .. 'l.~1.J'clt _Q. load screen to load it under the cross compiler. This is

required because the environ:nent of the cross compiler is different from that of the

resident compiler. It is the task of this separate load screen to i.solate the

actual program text from these differences,

The first responsibility of this load screen is to configure the cross compiler for

the kind of output to be generated. Refer to the screen titled 11CHOSS TEST . 11 Line

one will contain the following sequence:

NUCLEUS LOAD PROM LOAD COLON LOAD

The words NUCLEUS PROM and COLON name portions of the cross compiler that you must

explicitly select in the load screen because they are optional. The words SYMBOLS

and RAM name screens that provide other modes of cross compi.ling.

The two screens NUCLEUS and SYMBOLS arc mutually exclusive; only one of them is

loaded in any compile. You mu.§..t. loa cl one of them and it must be the first thing

done in the load screen. Their purpose is to empty the TARGET Vocabulary and

Dictionary in preparation for a new compile, as follows:

1. Re-initialize the Target Vocabulary to an empty state and F'ORG~T

a 11 definitions after the overlay point n~med COMPUTtR.

2. ~rase the Target Dictionary to zeros usi.ng the word CLEAR.

3. Hcset the Target Dictionary pointer to zero.

11. Define the locations of the words contc1 ined in the Nuc lcus.

In addition, the NUCLE:US scr·ccn wi.ll lransfer a copy of Uw pre.compiled Nucleus jnto

the Tar~ct Diction,1ry beginning at loc='l.tion zero. You wil.l rnore typically .l.o3cl

NUCLEUS rather th,qn SYM[JOLS. SYMBOLS mit1;ht be used to save compile Li.al~ whenever

the Nucleus already exists in PHOM c1nd need not be in~]udecl 'JS part of each n01·1

applicc1tion.

microFORTI! Technical Manual Page 101

The words PHOM 3nd RAM also name two screens which are mutually exclusive. One of

them must he selected and loaclecl j_mniediately after the loading of either NUCLEUS or

SYMBOLS. Their purpose is to create the cross compiler versions of the defining

words such as CONSTANT and VARIABLE. If the application is to be executed within

PROM memory, Vf1RII\BLE cannot be defined in the standard manner. Specifically, its

value cannot be contained in the parameter field because that would not allow it to

be changed, Instead it is compiled as a constant, whose value is the location in

RAM memory where space is allocated for the value. This mode of defining VARIABLE

(and CVARIABLF.:) is selected by PROM LOAD. If RAM LOAD is specified instead,

VARIABLE and CVARIABLE will be defined as in the resident compiler.

COLON LOAD completes the cross compiler by redefining: and; along with several

other compiling words. Fro:n this point on all words defined by the new will be

compiled into the Target Dictionary. The old meaning of: is available by using the

word H: (i.e., Host's:).

microFOHTH Technical Manual Page 10?.

16 .o THE CR_o_ss COMPILER ENVIRONt1.fil'lT.

A diagram of th€ dictionary structure of the cross compiler is shown in r'ig. 111.

It illustrates th£' organization of the Vocabularies within the cross compiler and

their general contents. The organization is sho~m in a logical rather than spatial

manner. The Vocabulary names are shown on dashed arrows that connect the names to

the tops of the Vocabularies they cont,rol. Tr1e Vocabularies EDITOR and ASSEMBLER

are not shown. The short Vocabulary STUB is used solely in the generation of the

cross assembler and does not come into play later.

The contents of TARGET are shown to map on to the contents of the Target Die tionary.

/\s stated earlier, the Target Vocabulary contains the names and locations of words

whose definitions are built in the Target Dictionary. TARGET is shown separated

from the other Vocabularies. This is because TARGET is a II sealed" Vocabulary. Any

search begun in TARGET will terminate there and will not continue into any other

Vocabularies. This enables the cross compiler to generate an error message upon any

attempt to reference an application word that has not yet been defined, even though

a word by th8 same name might occur in either IIOST or FOHTH.

There are two overlay points shown in the illustration. One is marked by the

definition: TASK; in FORTH, and the other by: COMPUTEH; in IJOST. TASK, as

al\,13.ys, is used to .nark the top of the FORTH Vocabulary. Because TASK is de fined

in FO11TII, and because the cross compiler has normally speci.fie<I HOST DEFINITIONS,

the required sequence for discarding the cross compiler is :

FOHTII Dr.FINITIONS fOHGET TASK TASK

Th e o v 'c"! r l ;1 y poi n t 111 ;:i r k e d b y COM P UT ,,: ll r c p I' cs e n t s t, he t op o f t h e

(!onf'iguraUon-·.i.ndependcnt port.i.on of the cross co'.llpilcr. Cross eornpiling for HOM

microFORTll Technical Manu-::il

FORTH

,' ~
I
I

App I . names :
& User 1 s

1

d
f. , I e -, 111 ng 1
\'lords 1

Uscr 1 s defining 1-1orcls
I

I

I ----- - • ...___ I

Defining \'lords

ASSEMOLER

TARGET
I

I

I

I

I

I

I

I

COMPUTER

I

I
I

- -- r Nucleus
1

• °':::::.:::..-__

I
..______ , I

. - '-,_
, Nucr. - --- '-__ t ___ ,_ & --- , --- I· -- : ::::::::,,._

I ..___
I , , ,

. ----L__

- - - - - - - - - --- - -(- - - - - - - - - - - - -· - .,,.

: TASK ;

I
I

I
I

I
I

Host Dictionary (RAH)

CROSS COMPILER DICTIONARY STRUCTURE
(not to scale)

Normally CONTEXT "' CURRENT+ HOST

ti gure 14

Target Dictionary (Disk)

microFORTII Technical Manuc1l Page 1011

or Ri\M for instance, is co:itroll.ed by words defin ed after COMPUTER. Tl1ere is also c1

utility that can be loaded at Lhis point (OUTPUT LOAD, described in the chapter,

11The Cross Compiling Proeess").

The illustration st1ows th:::it th~ TARGF.T Vocabul<1ry is split (physically) across

COMPUTl-:R. This imposes a special constraint on the ability tc FORGET COMPUTfrn.

TARGE:T must be emptied of all entires defined past COMPUTfrn before COMPUT£H is

discarded from HOST. The phrase to achiAve this appears at the beginning of each of

screens called NUCLEUS, SYMBOLS and OUTPUT. lt is based on the knowledge that there

is only one entry in TAHGET that is beneath COMPUTER, and that this definition is

loeated immediately beyond the definition of TARGET itself.

The following sections will discuss each of the major elasses of definitions

supported by the cross eompilcr. Hcfcr to Figure 15 as necessary.

16. 1 Colon J)cfini tions

The Target Vocabulary exists primarily to support the cross compiler in the

generation of colon definitions. Recall that the parameter field of a colon

definition is a list of addresses, each of which points to a predefined word. For a

resident compilation this list is built by the interpreter whenever the compile flag

STATE is set. !~or the cross compiler this function is performed by the word

COMPILE. COMPILE tal<e s over input scanning from the interpreter s t:trting from the

first word in the definition until the is reached at the end. Unlike tile

interpreter, however, COMPILE does not examine each word's precedenc e bit to

determine if it should be compiled.]nstead, all words are executed. The only

requirement is that each word occur in TARGET.

The compiling words IF, ELSE, THEN, DO, LOOP, +LOOP, BEGIN and END have their

ordln3ry defini.tions in TARGET. Most other words :1re pla~ed there by the defining

word EMPLACE. For ex~mple, during NUCLEUS LOAD, the word C! is enternd in TARGET by

0098 1-:MPLi\CE C!

(The number 009B will vnry f'or dif'ferenL computers becc1use i.t Is th~ addr e ss of the

par;::imeter field of Cl i.n the Nucleus.) Now wl\en C! is executed by COMPILE, the

microFOHTII Technical Manual Page 105

address 009H will be decremented by 2 (giving the address of the code address of Cl)

and placed aL the top of the Target Dictionary. Thus the effect of executing a word

de fined hy l•:r-1PL.I\CE i.s to cross cornµiJ.e the corresponding word on the target system.

The defining words of the cross compiler (CONSTANT, VARIABLE, CVARIABJ.E, CODE, TABLE

and:) also invoke EMPLACE. for example, if you cross compile:

10 CVARlABLE BASE

then BASE h~s been EMPLACE<l in TARGET. lf you then cross compile

HE:X 16 BASE C!

then COMPILE executes BAS!<: and Cl by compiling the corrseponding addresses in the

Target Dictionary. By th~ way, HEX is iteslf EMPLACEd in TARGET by this definition,

so that H£X rnay be cross compiled in subsequent colon defL1itions.

The number 16 in the definition of HEX is not found in TARGET, but instead is

recognized 3S a valid number, and is compiled as an 8-bit literal. COMPILE can

also compile 16-bit literals as needed.

The word; is in TARGET, and its execution oompiles a reference to ;S' (the code

routine for a subroutine exit) and then exits from COMPILE.

16.2 Defining ~Qrd~

Each of the important defining words is provided in the cross compiler. Some arc

not, however, c1nd otlrnrs are different in scnall w,:iys tl1at require olarifi.cation. In

addi.tion there are some defining words in the cross compiler that have no

counterparts in the resident compiler. Such words may need to be provided by the

user for the resident compiler during the testing phase. The followi.ng sections

will give a bri.cf deseriµti.on of' each of the words that are provided. Of' course, :

is a defining word, but it has already been covered.

microFORT!-1 Tecrmi.ccll. Manu::il Page 106

16.2.1)'J\RIAQLE and CVAHI.ABJ.&.

These tHo words are identical in all respects except for the amount of HAM

memory wllich they reserve for co:1tainin~ their values. They are of

special jnterf:'st becau~le it is around them that the major difference

between PROM and RAM compiles revolve. When used in a resident

compilation they crec1te a new dtcti.on,1ry entry and install an initial

vnlue from the staclc into the variable's pararnet.er field. When the

resident definition is executed it pushes the address of its pGrameter

field onto the stack. To store data into such a variable you must be able

to modify the parameter field.

Hhen cross compiling for R/\M the tcchni.que is the same as for n resident

compilation. The parameter field is initialized with the given value, and

the parameter field address is pushed on the stack Hhen the variable is

executed on the target system. Th is me tl1od of cl efini ng variables is the

most economical in terms of memory in that no pointer is required to

locate the data. Th ~ data location is a function of the location of the

definition itself.

For an application to execute in PROM, variables cannot be defined in this

manner. The parameter field ts not a writ;:_ible location. Each variable

must be defined as a constant whose value is a RAM address.

As each PROM varinble is defined it must be allocated sufficient space in

RAM for its intended use. This allocation is provided through a separate

dictionary pointer named N. N is a HOST variable that points to the next

available RAM locntion. This locati .on is returned by the word THERE.

Space is allocated by the· word HES. t1 RES will reserve four bytes of RAM

by incrementin~ N by four. Thi.s is analo~ous to incre:nenting ll in the

resident compiler.

]t is irnport3nt to lccep in min:.l the difference between PROM and RAM

variables whenever writi.ng code that is to be cor.1pilccl either way. This

turns out to be rnosL of the time. You compile into resident RAM for

testin~, and then cross compi.l .c for PHOM. The djff e rcnccs between the

microFORTH Tcchnicnl Manual Page 10'/

PROM and RJ\M cnv i.ronments can be characterized as follows:

1. The words N, THERE, and RES o.re only defined for a PROM cotnpHe.

In your resident compU.e load screen you 111ight de fine:

: N fl i : THERE HERE ; RES N + !

?.. A PROM variable is not initialized. The initial value given in

its definition is discarded.

3, PROM variables occupy conti.guous RAM addresses, unlil<e RJ\M

variables, whose values are separated by the code addresses of their

own definitions.

A cross compiled variable is not executable in the normal sense. To find

the address of a variable compiled for RAM n.'lmecl LAST you would use '

LAST. If the variable was compiled for PROM you would have to use ' LAST

(L Because these two forms are not compatible, special effort has be en

tal<en with cross compiled variables. Each variable name is defined twice:

once by EMPLACE for colon definitions, and onc e in HOST as a resident

CONSTANT. By simply naming the variable outside a definition you execute

the HOST CONSTANT. The value of the CONSTANT is the target address of the

variable.

16.2.2 ~

TABLE is a defining word that hns been devised primarily for PROM cross

compiles, although i. t h:1s also been defined for RAM cross compilation.

Its purpose i s to n<1me the starting a ddress of a table of constants. For

exainple 1

TAI-JU: Tl-:NS 1 , 10 , 100 , 1000 , 10000 ,

Hi l.l define a table of powers of ten. lnvol< i.ng TENS in the targ et system

will place the 8Larting address of the table on the stack . UnUl<c

VJ\RIABLE, TABLE docs not reserve any space for its parameter· field.

Instead, the val.ues in the table must be explicitly set by , or C,. Note

microFORTH Technical Manual Page 108

thqt the tabulated items are placed in the dictionary, which is in

rcad --only memory in a PROM cross compilation. (To allocate an array of

bytes in RAM, us e RES as discussed under 11Vl\111Al3LE: and CV/1RIP.BLE11 above.)

for a resident compile define TABLE as follows:

TABLI~ 0 Vl\RJ.ABLE -2 H + !

16 • 2. 3 _g_oJlS_TJV([

Constants exist and function in the normal manner when executed on the

target system. However, thf!ir n:':l;ncs are not executable in the normal

sense during cross compilation to provide their values. To determine th e

value of a CONSTANT named Nl\ME in assembler code, for j_nstan ce, use ' NA!'iE

@. This phase will work for either a resident or a cross compile.

16 .2 .11 USER

User variables were discussed briefly in the Chapter 3 .0. You were

cautioned there against defining any of your own so as not to interfere

with the systems assignments. You can provide your· own definition for

USER that will buil.d words that re fer to an area separate from that used

by the system as follow s:

0 VARll\13LE AREA 254 H +I AHEA Vl\HIAilLE U

USEH <BUILDS C, DOES> C@ U@ + •
'

f\ltcrnatively USL-:H could be defined as

USER CVAHlABL~ ;CODE

followed by code tl1at adds the byte addressed by H to the co ntents of U

and pu s hes the result onto the stack. Either of these forms could be

provided in the r es ident compiler load screen to permit testin•.<,

There are se ve ral limit~tions on user variobl es:

microFORTU Teclmical Manual Page 109

1. The size of a user area cannot exceed 256 bytes.

2. The user area can cross a modulo 256 byte page only on computers

with 16-bit ADD instructions. At the moment this is true only for

the 8080A ~nd derivatives.

3, The target user pointer (U) can only be changed by assembler code.

This is because U is not defined as a VAIUABLE (when it is in RAM)

but rather by an RQU (refer to the next section "EQll and LABEL11).

Likewise if U is a register (as on the COSMAC) it must be loaded by

machine code.

Although we do not presume to tel 1 you how user vari~bles ought to be

used, a study or the following list of properties should suggest several

possibilities.

1. For PROM compiles, a USEH variable occupies only 3 bytes as

compared to~ for VARIABLE or CVARIABLE.

2. The location of the user area need not be known at compile time.

3. The location of the user area need not remain fixed at execute

t irne.

11. USEfl provides an explicit w;1y to t'ix the relc.1tivc po8itlons of a

set of contiguous variables.

16.2.'J Code Definitions

TtH~ definin3 word CODE is used, a8 always, to begin a code definition. 1 t

plaees a code ftcld in the Target Dictionary that points one word ahead

to the p1ri'l!nctc r field, and EMPU1CE an entry in to th c Target Vocahu lary

that also points lo thi.~ parameter field. This CODF: dif'fers in character'

rrom the r esident compi.ler word in that it performs no context switching.

It assu1,ws th a t CON'n:xr ali·eHdy points to HOST and does not. change it.

microFORTH Technical Manuql Page 110

This is bec:1usc the cross as s ernbler is defined within liOST. IL does not

occupy a Vocabulary of' its o~m.

Thi s is an illlportnnt point to stress. With all of the a sselllbler redefined

in HOST, any word in the assembler having tlle same name as a FORTII word

will cause th e FORTH meaning to be burlf.\cl (unless you expl ici t.ly swi. tch

back to FORTII). fllthough the actual words buri ed 1·1ill vary between

systems having different assembler rnnemonics, the wor<ls lF, l~LSE, THEN,

BEGIN and END will always be among them. Later, as you will sea in the

chapter on extending the Cross Compiler, it will be important to remember

this. The primar·y implication of this separate Host assembler is that you

may cross-compile for any target processor.

Within a CODE definition the process of assembly procedes in much the same

manner as for the normal assembler: nu~ber and register values are placed

on the stack, mode words set whatever flags their function requires, and

mnemonics gener a te instruction code. Each word describing this process is

found and executed in turn. flrithmetic and s t ack management words will be

found in FORTll as usu:.il. The main difference is that th e generated

instruction s are pla ced in the Target Dictionary on disk.

OCC"lsionally it is necessary to obtai.n the location of a variable or the

valu e of a constant to use it within 3. CODE de finition . In the r e sid ent

assembler you would need only to refer to its name which would be ex ecuted

to provide the desired value. Within cross assembled code, however, such

na111e s would not even b e found 3nd ev e n so their execution would not

provid e the desir ed result becaus e they ar e defined by EMPLACE. ~or this

r ea son the word ' is redefined to search TflRGET for the word following,

and to return on the stack the location of its paramet er field in the

T::1rget Dictionary. After se arching TAl1GE'f, ' returns both CONTEXT and

CURHENT to HOST.

To illustr;itc how I would be used to provide the inten,jed valu e of a name,

assume th e followin~ words to have be en defined thus :

12 CON~TANT CON

CODE lNST ...

0 VJ\111J\BLE VAil

DEF;

12 US!m USE

T flRU: TBL

microFORTH Technical Manual Pa!_se 111

The evalu~tion of each of these words within either the resident or cross

compiler/assembler is given below:

Resident,_ Cross

CON I CON~

VAH VAR

TBL I TBL

USE I USE cg origin+

I INST I INST

I DEF I DEF

(The word "origin" is used above to represent the address of the base of the user

area.) The important thing to note in the above table is that all of the forms used

in the "Cross" column will in fact produce results identical to the corresponding

forms in the "Resident" column even if those forms were interpreted by the resident

interpreter. ~..lY. the eras~ compile form sh9uld_ be 11sed from the onset of .9oding

in .9rder j;_Q a void rewrites _Lor cross compilation.

Note also that to evaluate the location of a cross compiler VARIABLE (or CVARIABLE)

the word ' is not required. The name of the variable is sufficient. Special

effort is taken in defining such words. At the same time that an EMPLACE entry is

placed in TARGET, a normal CONSTANT definition for the same n3me is entered into

HOST. The value of the constant is the location assigned to the variable. Thus

each VAHIABLE or CVARIABLE definition requi.res twice the host memory of any other

cross compiled word.

The defi.ning wor-ds EQU and LAB~L are unique to the cross compj_ler

environment. ["or many of their uses ILQ equivalent form exists for the

resident compiler. They do not wake entries in either the Target

DkLi.on~u·y or tlw Target Vocabulary. \o/h3t they do j_s to enter CONSTANT

definitjons j_nto the Host Vocabulary. Such defj_nitions then arc

executable but not cor.npil .ablc, hence they can be referred to only in

microFORTH Technical Manual Page 112

assembler code or IIOST interpreter.

EQU defi.nes a n:irned constant. lt 11 cqu::it es 11 a valu e to ;:i s ymbol. Ttie

definHion

6 EQU PflINT

might be used to declare a printer port address to be 6 and to name that

port PRINT.

Such a definition costs nothi.ng in Target Dictionary sp;1ce but can

increase readability of code as well as facilitate configuration changes.

For the resident compiler you can define EQU to be CONSTANT. Remember

that a resident EQU definition will occupy real. dictionary space at

whatever point it is defined, (i.e. don't define an EQU in the middle of a

CODE definition).

LABEL is defined as HERE EQU, where the HERE refers to current top of the

Target Dictionr.1.ry. LABEL has no possible counterpart for the resident

compiler because the act of producing the definitions will disturb the

value of HERE (as well as that portion of diction3ry being l~belcd). You

can either overlook this incoinpatibility, working around it for th e

resident compiler, or else restrict your use of LAl3EL to entirely cross

assembled applications, as in a boot PROM.

microFORTil Tcchnic;:il Manu;:il P3ge 113

17 .0 THE CRfilli COMPlLING PROCESS

17.1 Procedure

When your application has been coded and tested to your satisfaction using normal

resident compilation you will want to begin cross compiling it. First generate a

cross compile load screen as outlined in the Cross Compiler chapter. With that done

you are ready to begin a cross compilation.

Before actually beginning any cross compile you must first insert a spare disk into

the second drive. This disk will receive the generated core image object program

(i.e. the Target Dictionary) in screens 21JQ thru 249 (ll90 through 1199 relative to

drive 0) No other part of either disk will be modified by the cross compiler.

These 10 screens represent 10K bytes of dictionary. This should be more than enough

for all but the most enormous of applications.

To load the cross compiler type CROSS LOAD and then load your application's load

screen. As your application is loaded, Lhe cross compiler will generate a free-form

load map of each word as it is compiled. Each individual load command will begin a

new line with the sct•een number (in hex) that is being loaded.

If the comptle should stop on an unknown word it will probably be due to one of two

errors. Either you h3Ve used a word known to U1P development systern that is not an

element of this Nucleus, or your cross compile load screen differs from the resident

compile load screen in providinrs for that word to be denned before it is needed.

In either case you must return to the> EDITOH and correct the omission.

If your ~DlTOR is resident si.rnply typ ll EDITOR, list the screen in error, and make
.I

C. ~ ~'(V.

microFORTI! Techni.cal. M:.rnual Page 1111

your corrections. To return to the cr·oss cornpile1• type [t'ORTII IIOST and then loacl

your load screen on~e more. Reloading CROSS is not required. If on the other hand

your fWlTOR i.s non-rosidr.nt (as on COSMAC system) you must type EDIT LOAD and then

m~ke your corrections as above. Loading tho EDITOR will cause the cross compiler to

be discarded. You must U1crcf'or0. type CROSS LOAD agajn l>ef'or·e l>eginning another

compile.

When your compilation is complete you will be left in IIOST DEfINlTIONS. What, this

means is that you 8re in the wrong Vocabulary to FORGET TASK. The correct sequence

for deletjng the cross compiler is:

FOHT!l DEL"J NI TlONS F'OBGET TASK TASK

You 111ay H3.nt to include the phrase FORTH DEFINITIONS at the end of your load screen.

17.2 Jhe Cross Compiler ~.ill

Fi~ur·e 15 shows nn exat0ple of the free form map produced by a cross compile. The

map is 8 rr.sult of redefining the words LOAD and CR, and the action of the word LOG

that is nested within all cross compile defining words. LOAD is redefined to issue

a CR ~nd then type the screen number before loading it. (Note that the word . is

redefined to output always in hex.) CR is then rcd~fined to perform a CR and a

SPACE. CR should be edited at an appropriate point (not inside a definition) within

any screen whose output exceeds one line, causing subsequent lines to be indented.

The majority of the output is produced by LOG. LOG will output the parameter field

locati.on (or symbol value for EQU definitions) and then the name of each word as its

definition it begins. For PHOM compiled variables the RAM address is output after

the name, followed by an cxtr::i sp.'.loe to separate it from the next address. If you

3re not working from a hard copy tcrmin3l you may wish to produce a compiler map on

th~ hard copy unit. To force all cross compiler output to hard copy on systems with

sep3rat~ printing terminals, simply type PRINTf.R LOAD beC_o_r_~ typing CROSS LOAD.

(Note: PRINTER LOAD is not supplied with all systc111s.)

roicroFORTH Technical Manual

78
45

Page 11S

48 3COO P 3C02 U 40 WHPUSII 41 HPUSH l12 NEXT 48 \·:NEXT
9

E2 '\'ARI ABLE' E? 'C0NSTANT' FC 'USER' FC 'u0 ES>' I OF ':'
49
43
44 23G C€ 245 < 2LiD /M0D 255 Mf-X
7A 3Cl2 @P0RT 3CIF !P0RT 27F RAM
7B r91 +BIT 2A4 +DIGIT 287 BIT 2C4 DIGIT 2n1 NUMBER
7C 2FB -BIT 316 -DIGIT 333 !BIT 348 !DIGIT 35D 6CL 366 REV 376 DISPLAY
7D 39A IMS 3A5 MS 383 • ISEC 3C4 P0RTS
20 3F.9 F.*
7E 40E SIDE 3C02 412 !SIDE 421 LEFT 42A RIGHT 43F DUPLICATED 451 RESULT
80 466 B0Tll 476 PA SS l17F FAIL 488 CLEAR 49b PRE.SSURIZE 4AI ENAuLE

4A7 NE\JP0nT LIAD BLACI{ 1-4133 l',D\.'ANCE. t1B9 C0N\!EnT l1BF LABELS
J1CS ST0F 4GB MCLR l1DI CLAMSd ELL

7F 4E4 AUT0 4EA BL00D 4FO DIALYSATE 4F6 START 4FC RETEST 502 D~NE
508 INIIIBIT SOE N0m1 511, READY 51A ATM 51E. A/u 529 PRESSURE
546 SENSITIVITY 54C TEST-TIME 552 DELAY 558 SERlhL SSC L0T

82 560 CHAP. 57E SPAC E 58'/ SPACES 595 CR 5A8 CR
5131 DIG SBC PRINT sec REJECT SEE S/N 3C03 5F2 LABEL

81 62F CII 3C05 633 OC0L f3F. C!IAR Gt(SPACE (6F SPACES
67D CR 698 L0G 6A6 T/N 3COf fAC SERIAL# 6 B9 TEST#

83 6D1 FAILED 6E3 TEST 7~2 LE.AK 7C9

Figur e 75

micro FORTH Technical Manw:i 1 Page 116

17.3 Core Imag_e Ol!tplt

The core image area on disk contains the output of your finished cross co:npilc.

vlhat remains is to transfer thi:, program in some form to your target system memory.

lf the program must load into HAM it is the user's responsibility to determine

formatting requirements based on the boot media and boot routine to be used, and to

provide appropriate custom output routines. Outputtin~ the program for PROM or ROM

memory is easier to consider in the general case.

There are in genet•al two separate approaches to PROM programming. The most direct

is to output the generated program into the PHOMs throu,gh a PROM programming

interface attached to the development system. Software to drive such interfaces is

available for systems that have them. The opcrc1tion of such software may vnry

between systems and is therefore documented separately when delivered.

Another way to program PROMs involves outputting the program to some media in a

format appropriate to some extern3.l programming device. This is most often paper

tape. A paper tape formatting routine is provided as standard and c:in be operated

by the following procedure.

1. Before loading the cross compiler you must first provide access to

a punch device. lf your termin3l is a TTY then skip this step; you

already have such access. If you have a TT 'l as a hard copy device

then load the PRINTER screen as described earlier (Section 17.2). If

you have a high speed punch drive then load its software just as you

would PRINTlrn, before doing a CROSS LOAD. The import3nt thing is to

have ECHO so defined as to output a single character to a punch

device.

2. Type CROSS LOAD and then load your application. If the

application h3s already been compiled and is in the Tar~ct Dictionary

you need not recompile it. If you h,1ve just finished a compile and

haVf! not yet deleted tile cross compi J.er you need not re load it.

3. Type OUTPUT LOAD. This .I. oads the core- i1nage output word Pi10r1S and

leaves you in hexadecimal.

/

micro~'OHTH Technical 1-1, 1u-:1l. Page 11'(

''· If the size of your PROMs i.s not 512 bytes you rnust change the

value of the variable SIZE. ror 1K PROMS type:

400 SIZE HI

5. If the punch device is not the console device then bring it up and

online now. If the punch device is a console TTY then do not enable

the punch unit until after executing step 6.

6. Type:

start-addr Oproms PROMS

where II start-addr" is the first location in the Target Dictionary to

begin punching, and 11/fpr0!ns 11 is the number of PROMs that will be

needed to contain the entire program. If your punch unit j_s a

console TTY then enable the punch unit just after the carriage return

for the above command, while the leader is being output.

The word PROMS will output 200 characters of blank leader followed by 11/lproms"

records of "SlZE 11 bytes each and then 200 characters of blank trailer. Each record

consists of a sentinel character of all on e s followed by 11SJZE 11 bytes of program in

binary format and then 100 null characters for record separation. Most PROM

programmers are capable of accepting such a format.

17 .11 Program .P.11...!!!12.S.

At some point in the cross compilation cycle you may wish to take a hex dump of the

Target Dictionary, either to verify Lhe cort·cct compilation of some application

word, or to provide a ninl h.:ird copy recorcl of the contcnLs of the PROM:-;. The word

DUMP is defined in the OUTPUT screen along with PROMS. You tnust load H exactly as

you would to punch a PROM tape although provi.ding for hard copy i8 opt.i.onal.

depending on your needs. You then use it just as you would use the resident DUMP,

that is,

start-addr length DUMP.

microrOflTII Teclmical Manu3.l Page 118

17 .') R8locat.in_g and _l~XPM<lin~ the Targf~t Dictionary

The disk address of Lhc st~rt of th~ Target Dictionary is controlled by the value of

the constant NE\·/ of screen CHOSS. Its vc1lue is a hexadecimal. j)J.9..9_1~ address (not a

screen number). l f you h::ive the PROM progra111mlng software, it will contain a

definition of NEW, which should be the sarne.

The size of the Target Dictionary is assumed in three places: the MIN functions in

ADRS on of screen CROSS, the loop limit !'or CU:AR of the screen titled "TARGET

VOCABULAHY,11 and the OHG of screen OUTPUT. Helocc1ting the Target Dictiorrnry should

not be undertaken lightly. It should be rnoved o:-ily in case of a drive failure or an

extremely l<1rge application.

rnicroFOHTfl Technical Manual. Page 119

18.0 EXTENDING THE CHOSS COMPILER

Just as for a resident compilation, you can extend the capabilities of the cross

compiler by adding your own compiling or defining words. For the most part such

additions can be defined just as they would be for the resident compiler (see

Chapter 13.0 and Section 5.8), even to the point where the same definition ~ould be

used by either environment. Using the same definition in both environments is very

desirable from the standpoint of reliability.

The meanings of many words used in compiling and defining words however are just a

little different under the cross compiler. further confusion is added by being able

to use words from either of t .wo Vocabularies: FORTH or llOST. Firvilly ther'e arc some

functions which probably cannot be defined in a manner th;:it is transparent to the

type of compiler.

As an illustration lets consider a definition and use of ARRAY as it might occur in

a resident compilation.

: AHRAY 0 CIJAHIABLI~ 1 -· DUP H l · ! IHmE SI-IA!' r•:flASE

20 AflHAY INPUTS

The purpose of AHHt1Y is to define a n3rned region of memory of so111c specified byte

length and to initiali:J,e that region to :i:eros. Let's explore how to define such a

word for a cross compiled application. Assume, for the s3ke of argument, that the

cross compilation is destined for HAM.

rnicroFOHTH Technical Manual Page 120

The first problem encountered in trying to us e this same definition for the cross

co!llpilcr is that the : used l::. the wrong one. The c ross compiler : will try to

define ARRAY as an :1pplication wor-d and enter it inl.o l.he Target Dictionary. ln

fact the intent here is to def.i.ne l\HRl\Y within HOST as a normal resident de finit.:,ion

so that it may be used cturi.ng the compil .atlon to make new target words. To do this

you must define ARRAY by tneans of the ~l_d_ : th:1t has bc~en redefined as II: for

s;:i fekeeping. Then, for cornpa tibi 1 ity, define II: in your resident load screen as

H:

II: may now be used to add definitions to the Hust Vocabulary,

The second problem is unique to the 8080 cross compiler. The word His the name of

an 8080 register defined by that name in both the assembler and cross assembler.

The resident assembler is in a separate Vocabulary so no conflict occurs there. The

cross compiler assembler i3 defined in HOST however, and precludes the use of H for

a dictionary pointer. The name DP is therefore used instead of H within the 8080

cross compiler. TherP are two possible solutions. Either define:

DP H

in the resident load screen and use DP+! in nRRAY, or define:

ORG H

for the resident compile and use the phrase ll~RE + ORG in l\HRAY. The use of ORG in

the preferred form becausf! it is machine independent. (OflG is clefin ed for the cross

compiler by CROSS LOAD.)

The last problem is that ~:Rl\SE will clear resident memory, Jl.Q1 Target Diction3.ry.

One solution is to make~ definition for ERASE that can be added to the cross

compile load screen.

ll: ERftSE OVl-:R + SWAP DO O I C ! LOOP;

This is certainly not the only way to define ERASE, nor is it the b~st. lt is Riven

hero solely because it introduces 2 new complication: its l is th e wron~ 1. lf left

microFORTH Technical M~nual Page 121

as is the I used would be that of the cross assembler. The IMMEDli\TE word FORTH

must b e added in front of th e I to ensure finding the correct version. If .left in

FORTH however, thQ C! used would be FORTll' s, not the one that would store into the

Target Dictionary. The word HOST is made immediate for just such a case. Aft er

inserting HOST between the I and Cl the correct definitions would look like this

H: ERASE OVER+ SWAP DO O FORTH I HOST C! LOOP

Should :1 reference to HOST be rcquir·ed within a scree n common to either compiler ,

you could define HOST for the resident compiler by

HOST ASSEMBLER IMMEDIATE

Let' s re-examine the final definition for ARRAY.

H: AHRAY 0 CVARIABLE 1 - DUP HERE+ ORG HERE SWAP ERASE

If the phrases HERE+ ORG and HERE SWAP ERASE were merely exchanged, the definitions

would not only not work, it would probably crash the system the first time it was

used. This would come about because HOST versions of C! used in ERASE would store

into resident memory. Recall that the HOST words C@, Cl,@ and ! were all redefined

to select between target memory and real memory based upon examination of their

addresses. The a ssu~ption is that it is not reasonable in a FORTH program to refer

to locations outside the active diction ary. The rule employed in the cross compiler

for these four words can be stated thus:

J\11 addresses less than or _equal _ to the target HERE and greater than or

equal J& _!,__hg value Q.f WO (th e address assigned to the bottom of the core

image ar ec1) will refer to Target Diction.fil:.Y, all other addresses fil.11

_r~fcr _to Host memory.

By not including the new region into the active Targ e t Dictionary with the ORG until

after the ERASE, the C ! in EflflSE must assume that th e Host memory is being

referen 2ed .

If the amount of accommodation and careful coding that was r·equired for the single

word AHRflY seems excessively severe, remember that it was chosen as an example i.n

microPORTll Techniczil Manual Page 122

ord0.r to i l lustr::i I,(~ as many problems as possible. 1 f you intend to create your own

definin .~ or eou1piling words for' the cross cornpllcr, you must le,irn to rccogni;,,e such

problem areas and work around them. Don't ignore the possibility that many problems

might go away if the word were di . ffercntly structured. Tt1e following example, for

instance, would worl< cqu3Jly well in eith! .'r environ:nent, gi .ven only the resident

definition for H:

H: ARRAY 0 CV AIU ABLE 1 DO O C, LOOP

In summary, the user wishing to .i.mplement his own defining words in a cross

compilation should keep the following points in mind:

1. Define your defining words with H: rather than

2. Remember that HOST C~, C!, @, and l refer to Target Dictionary only in

the range from WO to HERE.

3. 8e sure that the words used in the definition of the defining word are

coming from the correct VocabuUi.ry (FORTI! or HOST). £i'ORTll is se;irched

after HOST, so this is not a problem unless you wish to use a FORTH word

that is defined differently in HOST. Note especially that the entire

assembler is in HOST. In addition to 1 (and, on 8080 systems, II), this

buries the FORTH compiling words ff, ELSE:, THEN, BEGIN and END.

18.2 Compiling Words

Unlike defining words, compiling words must he in the TARGET Vocabulary, so that

they can be found by COMPILE durin'5 cross compilation or colon definitions.

llowever, becr1use compiling words must manipulate the stacl< during cross compilation,

they must be defined in terms of FORTH words such as SWAP and HOST Words such as C,.

To achieve this, place i."111 H: definition of ttie compiling word in the cross cornpile

load screen, and follow the definition by IMMEDIATE. In this way the compiling word

will be defined initially in l!OS'l', and then be transferred to TARGET by rearranging

Lhe dlction~ry links (this is the function of the HOST redefinition of JMMRDIATE).

rntcroFORTH Technical. Manur1l. Page 123

For 8Xampl e 1 the defining word [discussed in Chapter 8.0 (OUTPUT) mi.gilt be

defined

COUNT DUP 1+ SWAP C@ ;

[I COUNT DUP 1+ R> + <R

HEX II : [\ [5 D WO RD

DECIMAL

TYPE i

HERE C[! 1+ HERE+ ORG I MM ED I ATE

The first [defined must become part of the Target Dictionary, and consequently

has a : definition. Note that the user will have to supply his own definition of

TYPE, for whatever device he intends his output.

The second [, on the other hand, is not j_ntended to be executed on the Target

System, but rather during cross compilation, so it is defined by H: and made

IMMEDIATE.

(The word \ was described in Section 5,8.)

rnicroFORTII Technical M::inu:11 Page 1211

19.0 A TYPICAL DEVELOPMENT _!;YCL.A

Let us ex:.1mine the cross compiler from the st,rndpoint of how it would be used in a

typical development cycle. Although a development cycle using fORTH remains qui.tc

flexible, it will probably contain each of the following four major ph,1ses:

19. 1 Hesearch ansl Design.

Durin~ this phase preliminary hardware-software tradeoffs are determined, the I/0

environment is outlined, and the major elements of the software are blocked out.

Often the most productive way to outline the organization of the functional modules

is by actually coding a few of the highest level definitions in FORTH. Having done

this you will have divided up the functional responsibility into conceptual modules,

given descriptive names to those modules, and illuminated the now of control

between them. Since FORTH is interactive, you will want to use your terr.1inc1l from

the earliest stages, editing definitions into blocks as you create th~m. This is

the techn.lque known ;_is "top-down design". You will be well on your way townrd the

coding of your application.

19.2 Codin_g r1nd Testil)g

The dividing line between design and coding is not clear cut, but can be thought of

as centering around that period wh~re the descriptl.on of some portion of the program

has reached a sufficient level of detail that it becomes practical to try loadin~

it. That i.s when tn1~ fun begins, for then you begin inter'lcting di . r~cuy l·iilh your

application. This could a.lso be ,1 period or gre:.1t fr·ustri'\tion if you 1rnve no way to

com111uriica te with special h:11·d1-1arc which is noL 'iVa ilab.lc on tll2 dev e topment systcin.

microFOHTll Technical tfamnl Page 125

lf your application performs little 1/0 and much computation such a situRtion is

tolerable. 13ut if yours is a control-oriented problem you will be short circuting

perhaps the 111ost powerful feature of FORTH should you be uni:lblc to cor11111uni.cate with

your target devices: that of truly interactive program development.

This interactive nature of FORTH is a function of the development system's resident

compiler and word interpreter. It is not available to 3 cross compiled program. In

this respect the cross compiler more closely parallels the conventional concept of a

compiler. Its output does not expect the support of the development system, nor can

it be executed until it is sufficiently co:nplete that it can st,rnd on its 01-m (and

is transfered to the target system). When it does not work you must spend many

hours and mu~h inductive logic trying to track the trouble to its source (if' indeed

it has only a single source). This do-or-die methodology has led to the

proliferation of debuggin~ tools such as debur; monitors I hardware traces, hardware

breakpoints, in-circuit emulators and logic analyzers.

The modular nature of FORT~! programs and the accessibility of all levels of a

definition facilitates the testing of each word in a vocabulary befo1•e it is allowed

to wreak havoc upon half a dozen other words. Small, throw-away test cases become

unnecessary and large, untested programs cease to exist. The FORTH method assumes,

however, that when testing 1/0 code you have access to ports that are connected to

real elev.ices. The easiest means to accomplish this is to assure bus compatabili.ty

between the development and target syste~s. Then all that is necessary is to plug

the interface cards into the development computer and invoke your control words from

the terminal, usi. ng the .r~sident_ compilation of your application. By this means you

may test the majority of your application before ever cross compiling i.t.

If this i.s not possible you rnay need a bus extender module to connect the

d~vc-dopment system's address, d'3t:-1 and control lines to the target system's bus.

This i.s usu-'.lll.y r·riferred to us In--Ci.1·cuit E111ul"ltion, although the word is

occasion,111.y used to mean much rnorc, such as extern3lly controlled breakpoints or

traces. Lacking any such inter-system communication, your· task becomes more

difficult and will almost cel'l,ainl.y rciquirc several passes through the cross

cornpilati.on phase.

111 i_croFOHTH Technical Manual Page 126

19.3 Cross Compjling

Duri.ng the cross co:npile phase the tested application is passed through Lhe cross

compiler to produce an object program on disk. The object program is then

tr2nsferred to a ROM or PROM. Care must be taken durin~ this phase to avoid

introducing any new errors. One potential source is ln the initialization code.

Because the applicatio:i must stand alone once cross colllpiled, the burden of system

initialization is placed on the user. This is not an especially difficult task but

it should be carefully desk checked to avoid any cat·eless errors.

The following four functions lllust be included in the initialization code:

1. Load the stack pointer with address of tlle bottom of the stack.

Remember that the stack will grow from high to low memory and is

decremented before each push. 1 t should therefore be set to the

highest address plus one of the region you wish to allocate for

parameter stack, As it is often difficult to determine the amount of

stack required, it is simplest to place the parameter stack

immediately benenth the return stack in high memory. Then it is free

to use all available memory.

2. Lo,7.d the return stack pointer with the address of the bottom of

the return stack, usually the last RAM address plus one (the return

st:1ck also grows from high to low memory.) Be sure to allow

sufficient return stack for your needs. Remember that active DO

loops use lt bytes of return stack and each ;:ietivc call to a colon

definition uses 2 bytes. The procedure for determining return stack

requirements is tedious but straightforward. An alternate method is

to :nake a generous guess and then add a fudge factor. You should

count up all uses at least once to gain confidence in your ability to

estimate t11em. A return stack overflow is often fatal and always

damaging. 611 bytes is usu a 11.y adequate.

3. Load the interpreter pointer with the address of the parameter

field of ti1~ outermost definition in your appliccit.i.on. This will be

the st3rting point for the interpreter. For this address to be !mown

you must arr;1nge for th e i.nitiali .2aUon code Lob~ the last thing

microfORTH Technical Manuql Page 127

compiled.

ll. Transfer control to NEXT just as you would at the end of a CODE

definition.

Other items to be initialized might include the User area base pointer (if you have

made use of USER defined variables) or certain regions of RAM that may require known

initial states. In addition interupts may need to be enabled and programmable 1/0

ports will need to be programmed.

19.4 Installation and Checkou~

The last phase i.n developing a cross compiled applicati.on is to install the PROMs

into the target system and verify that the system functions to specification.

Trouble at this stage could be due to one of the following reasons:

1, Failure of an untested definition. lf it was not possible to test

each definition from the host computer then extra effort is required

to desk check such definitions more thoroughly. lf a CODE definition

may be at fault it could be traced in the target system with the use

of the logic analyzer (i.f available). lf a high level definition

might be at fault it should be broken up and tested in piP.ces,

substituting "stubs" in place of any untested words it may use. (A

stub .is a word with a temporary definition, designed to approxirnatc

or simulate the definition which will eventually replace it.)

2. Failure due to cross compiling. Check the initializ.ation code

thoroughly, Check tile operation of any compiling 01· defining words

you may have added by inspecting dumps of the object they µrodu:)c~.

ln genera], suspect all dissimi.l;)rit.ies in cross co:npiled and

resident compiled source screens. llereacl the section 11Th8 Crosi;

Compiler Environment" ancl be sure you·_. 1clerstand the operationa.l

differences between the resident ~nd cross compiler.

microFORTH Technical Manual Page 1213

3. llardwa re failure. Hardw3rc problems are best solved wiLh an

engineer. You might also find an oscilloscope, logic analy:.,;cr, or

in-circuit emulation useful.

APPENDIX A
microPORTH IMPLEMENTATION on the RCA COSMAC (1802)

In this appendix we assume that you understand and can use the hardware
functions of the COSMAC (described in manuals supplied by RCA). In addition,
you will need to have worked tl11·ough all previous chapters of this Technical
Manual in order to be able to use the information given below.

ALL numbers are given in hexadecimal unless otherwise specified.

1.1 DATA FORMAT

The main memo1·y of the COSMAC is accessed in eight - bit bytes. microFORTH
provides several words for accessing bytes (CV ARI ABLE CZ C@ C ! C) .
For the most part, however, microFORTH handles data in two-byte pairs, called
words. Both the parameter stack and the return stack can be regarded as a
stack of words, each of which is sixteen bits wide. The high - order part of a
word is in the byte with the lower address (and this byte provides the word's
address).

1. 2 REGISTER ALLOCATION

Certain registers have been 1·eserved fo1· system functions and are customarily
referred to by their letter names, rather than by numbers:

Name

s
I
u
T
A
w
p
R

Register

D
C
4
9
A
B
3
E

Assignment

Data stack pointer
Next word to be executed
Address of user's memory
Temporary register
Auxilliary register
Current word being executed
Program counter
Return stack pointer

Registers O, 1, and 2 are used by the hurdware for DMA and interrupt handling.

Registers 5 to 8 nre not used by FORTH and are available for the user to
assign. You may also use registers W, T, and A (9 - B) for scrntch registers
when no code beginning word is used, 01· registers P, T, and A (3, A, 9) when a
code beginni11g word is used. (Code beginning words are described in Section
1.5.)

microFOR'I'H TECHNICAL MANUAil, Page A - 2

1.3 ASSEMBLER MNEMONICS

The mnemonics of the various COSMAC operation codes have been defined as
words wl1ich, when executed, assemble the corresponding operation code at the
next location in the dictionary. As with other FORTH words, the operands of a
mnemonic (i.e., register numbers or nnmes, immediate data, and rnodifiel's) must
precede the mnemonic. For example, to select Register S as the index
register, you use:

S SEX

This rule holds for all instructions that specify a register.

1.3.1 Modifiers of Mnemonics

The word +C is used to direct the mnemonic which follows it to assemble
nn instruction that utilizes the carry flag (DF). This word may be used
before the following mnemonics:

ADD SM (subtract with borrnw) SD SHR SHL

The word # is used to direct the mnemonic which follows it to assemble
an immediate instruction. This may be used with the following mnemonics:

OR AND XOR ADD SM SD LD

For readability, the mnemonic LD has been defined as identical to LDX ,
the load from index register, for use in assembling "load immediate"
instructions.

To use both modifiers together, you could declare:

0 # +C ADD

which assembles an instruction to add the carry to the accumulator. (This
is can be used to propagate the carry from a low--order byte to a
high-order byte.)

1. 4 TRANSFERS

Program control is ef f ectecl by the words:

BEGIN ... END
IF ... ELSE •.• THEN
BR
NEXT

NEXT is defined as F SEP • Register F (decimal 15) contains the address of
the inner interpreter. All CODE words should return control to the inner
interpreter by ending with NEXT or· a macro that assembles NEXT , such as
PUSH (discussed below).

The words IF , ELSE , and END ass e mble short (two-byte) branch
instructions (instructions 30 through 3F). IF and END should each b e
preceded by one of the condition codes enumerated in the following table. The
branch is taken if the condition is not met.

micl'oFORTI -I TECHNICAL MANUAL Page A - 3

Mnemonic

Q
O=
DFL
<
o<

n EFL

Condition

Test fo1• Q set
Test for accumulator ze1·0
Test for accumulatol' cai·1·y flag (DP) set
Test for accumulatol' borrow (DP reset)
Test for sign bit of acct1111t1lato1· on (desll'oys

accumulator)
Test for external flag number n set (n = 1 - 4)

If any of these conditions is followed by NOT , the condition is revec·sed . Fo1·
example, < is defined as DFL NOT .

Since the program control words all assemble short brunches, the source and
destination of a branch must be on the same pag e . This can be guarant eed by
the word PAGE , which advances the dictionary to the start of the next page
if there al'e not as rn any bytes left in the cur1·ent page as the number on top of
the stack. To determine how many bytes are need ed , count eight for the
dictionary entry and add the number of bytes up to and including the last BR ,
END or the first byte after THEN . Each immediate instruction requires two
bytes, as does each IF , ELSE , END , and BR •

For example, the definition of ERASE is:

13 PAGE
CODE ERASE

T DEC
2POP
T GLO

BEGIN
O= END

BEGIN O#LD A STR A INC
T GHI O= END NEXT

In this case the count extends to the second byte of the second O= END

The COSMAC's long skip instructions are occasionnlly useful fo1· conditionally
skipping over· the following byte. The mnemonic LS is used to generate a
long skip and is preceeded by the condition code for the test. The generated
instruction will skip whenever the condition is met.

The code P INC may be used to assemble an unconditional skip.

1.5 CODE BEGINNING WORDS

At the start of a code definition it is frequently useful to take parameter s from
the stack, place them into the A and/or T regist ers, and increment the
stack pointer. Since this is a rather tedious exercise on the COS MA C, th e
microFORTI-I assembler includes code beginnings (i. e ., sharing of the entry
pointer) which will automatically take items off the stack and pla ce them into
the registers. This can g1·eatly reduce instruction overhead in a code
definition.

To implement these code beginnings, however, it was necessary to 1·everse the
use of the W and P r egis ters (the currently exec utin g word pointer and the
progrnm counte1·, 1·espectively). When a code definition uses a code beginnning,
the program counter is placed in W and th e currently executing word pointer
is placed in P • P becorn es a scratch register (instead of the usual W) . A
110- op instruction, th en, is no longer P SEP but W SEP in any code
definition that uses a code beginning. These two registers wel'e switc hed so
that . W ca n be declared as the program counter (which means that the code

microFORTII TECHNICAL MANUAL Pngc A - 4

beginnings will t·ctm·n you to your code definition upon completion.

The code beginnings are:

BINARY
2POP
lPOP
PUT

Each will be discussed in terms of the following two items: 1) stack pointer
result and 2) registers used.

The BlNAR Y code beginning increments the stack pointer by three bytes (a
pop operation) and leaves it pointing to the low-order byte of what was the
second stack item. The code may then conveniently place an item (a PUT
operation) on the stack. The stack pointer is placed in the index register. In
BINARY, the high-orde1· part of the top stack item is placed in the high-order
byte of the T register. The low-order byte of the top stack item is placed in
the low-order byte of the accumulator.

The PUT code beginning increments the stack pointer by one byte so that a
value may replace the current top stack item. In PUT , the top stack item
(sixteen bits) is placed in the T register. The low-ordet· byte of T is also
in the accumulator.

The 2POP code beginning increments the stack pointc1• by four bytes. The top
stack i tern is placed in the T register and the second stack item in the A
register. The low-order byte of A is in the accumulator.

The lPOP code beginning increments the stack pointer by two bytes.
stack item is placed in the A register. The low-ordet• byte of A
accumulator.

1.6 MACROS - EXTENDING THE ASSEMBLER

The top
is in the

Since the mnemonics are defined as executable instructions, they can be
compiled into colon definitions that will function as macros. The following
examples are part of standard microFORTH; you may wish to write others. The
macro DST is defined as:

: DST DUP OEC STR

Another useful macro is:

: O#LD F GI-II ;

which makes use of the fact that the high byte of Register F is always zero.
The macro:

: PUSH S DST NEXT ;

may be used to push the accumulator onto the stack nnd return to the inner
interpreter.

micl'OFORTH TECHNICAL MANUAL Page A - 5

1. 7 USE OF THE ALLOCATED REGIST ERS

The Registers S and R are used to contain, respectively, the address of t he
top byte of th e parameter stack and the return stack (top byte equals lowest
address). Any CODE words which manipulate these stacks must be careful to
readjust the pointers before returning to NEXT •

Register U contains the sta rting addt·ess of the user arefl. The defining word
USER is used to nam e locations relative to the start of the user area. When 11

USER variable is invoked, this relative address is added to th e low - ordet• byte of
U and the result (including the high -order byte of U) is placed on the stack.
There is no carry from low-order to high -o rder byte, so the user area cannot
cross a page boundary.

Registers and W ere used by the inner interpreter. The heart of the
iuterpreter is:

I LOA
W LDA

W PI-Il
P PHI

I LDA
W LDA

W PLO
P PLO

followed by P SEP • Here it is assumed thut is pointing at an address
that is compiled into a colon definition. The fir st phruse transfers this address
to W while advancing I . W now contains the addr ess of the code address
of the word to be executed. The second phrase moves the code address to P •

The user will not normally want to alter I , since thi s will alter program flow
after returning to NEXT • This is not true, however, for W , since W can
usefully transmit the starting address of the parameter field of the word being
executed. Consider, for example, th e definition of CVARIABLE :

: CVARIABLE USER ;CODE

Using CVt\RlABLE , we define CVAR :

0 CVARIABLE CVAR

W GLO S DST W GHI PUSH

Now when CVAR is invoked the code following the ;CODE in the definition
of CVARIABLE will be executed. This code must put the address of the
parameter field of CVAR on the stack. This is done easily by transfering W
to the top of the stack.

1.8 INTERRUPT HANDLING

The COSMAC provides only on e lev el of interrupt. When an int er1•upt occ urs,
the P and X registers are saved in a special register (T), then P is set
to one and X is set to two. Consequently, Register 1 must contain the
address of the interrupt handler. Not e that setting X to two means that it
contains the register designated by m icroFO RTH to point to the top of th e
1·etum st1wk.

Since certain FORTH words (I , LOOP , +LOOP) t emporarily point R nwny
from the top of the retum stack, you can not r eliably save T th ere . Instead,
we suggest that some othet' fre e r egiste r (i.e., 5 - 8) be initializ ed to poiut to a
save ar ea. ln th e int errupt handl er , use a SEX instruction to designate this
r egiste ,· as X priot· to a SAY (78) to sa ve T . The int errupt handler
should also save th e acc umulator and carry bit, if these will be altered, plus any
registers needed by the handl er.

microFORTII TECHNICAL MANUAL Page A - G

After processing the interrupt, execution must be resumed where it left off at
the time of the interrupt. Also, the starting address of the interrupt handler
must be put back into Register 1. This is conveniently done by branching to a
RET instruction (70) in the byte just prior to the entry point of the interrupt
handler. Of cou!'se any other restoration, such as of registers, accumulator, or
carry, must be done first.

1.9 TIMING CHART

The next page features a list of operators and the number of instructions it
takes to implement them, including the count for NEXT . The execution time
of a CODE word can be found by adding the num bet· of its instrnctions,
including the branch to NEXT , plus ten for NEXT's execution time.

The execution time of a wo1·d defined by a ;CODE defining word is computed
similarly, as the time of the code plH'ase in the definition of the defining word.

To obtain the execution time of a colon definition, add the times of its
components, plus twenty-one and fifteen, for entry and exit. For example, the
execution time of:

: ROT <R SWAP R> SWAP

is:

21 + 19 + 28 + 19 + 28 + 15 = 130

The execution time of a word defined by a DOES> defining word is the sum of
the times of the phrase DOES> through inclusive in the definition of the
defining word.

microFORTH TECHNICAL MANUAL 8/29/'78 Page A - 7

'l'ABLE A-l. TIMING CHAR'!'

WORD

NEXT
EXECUTE

NUMBER OF INSTRUCTIONS

10

8· bit Ji ternl
16-bi t 1i teral
DO
LOOP

+LOOP

IF and END

ELSE and WHILE
RAM VARIAI3LEs,

CVARIABLEs,
and TABLEs

CON STAN Ts,
PROM VAHIABLEs,
and CVARIAI3LEs

USERs
DOES>

' AND
+

U*
U/
MOVE

DUP
DROP
SWAP
OVER
@

+!
C@
C!
O=
o<
<R
R>
I
2POP
lPOP
BINARY
PUT

l 'I
19
20
29
36 if loop termi11utes,

43 if loop is repeated
37 if loop tel'minates,

44 if loop is repeated
18 if condition is true,

19
17

19

19
27
21
15
22
22
21

25 if condition is false

106 to 114
119 to 127
26 + (6 * count)

19
13
21
26
23
21
22
21
19

+ (2 * r~ount/25'1])

20 if true, 21 if false
18 if true, 20 if false
19
19
20
9
5
6

mict'oFOR'l'H TECHNICAL MANUAL Puge A ·· 8

1..10 USER AREA MAP ------
Offset Name

0 - 4 Reserved for multiprogram mer

5 so
7 BASE
8 H
A CONTEXT
C CURRENT
E STATE
F BLI(

10 IN
12 OFFSET
14 SCR
16 R#
18 MODE

APPENDIX 13

GLOSSARY

microFOHTJ-1 on the RCA COSMAC

FORTH, Inc.

WORD

ii

+C

O#LD

O<

0 :c;:

lPOP

lRG

2POP

<

A

ADD

ALU

AND

BINARY

20 August 1978
COSMAC GLOSSARY

VOCAJ3UJ,AllY SCREEN STACK: IN OUT

ASS0vll1LER 6 0 0

Page 1

Se t s t he i 1m1e d i a t e b i t i n t h e u s e I' vu I' i ab l e MODE , f o r u s e by
the instruct i on nm emo n i c .

ASSEJ.\1BLER G 0 0
Sets the cat' I' y b i l i n the user var i ab 1 e MODE , for use by the

instruction mnemonic.

ASS.0.VlBLEll '/
Sets the accu1nulator

Register 15,

0 0
to tile value 0. Lon de d f r om h i g h · · o l' de r

ASS0\1BLER 8 1 0
A macro that tests fot• the sign bit in the nccumulator. When

executed, the contents of the accumulator ar·e destroyed.

ASSEMBLER 8 0 0
A constant that will set the 0 :-: condition code.

ASSEMBLER 20 1 0
Pops the top stack item into the A register. The stack

pointer is incremented by two bytes. The low-ot·der A
l'egister remains in the accumulator. A code beginning.

ASSEJ.\1BLER G 1 0
Creates a 11one-argument class 11 instruction mnemonic.

ASShvlBLER 20 2 0
Pops the top stack item into the T 1•egiste1· and pops the

s econ d i t em on t he s t a ck i n to t he A r e g i s t e r . The s t a ck
pointer is incremented by fout· bytes. The low-order A
register l'emains in the accumulator. A code beginning.

ASSEMBLER 8 0 0
Sets the condition code for OF Peset (i . e. , a borrow).

ASSEMBLER 6 0 0
A constant that declares A to be Register 10, ll scratch

reg is t e 1•.

ASS 0.\1.BL ER 6 1 0
Instruction mnemonic.

ASSEM11LFJl 6 1 0
Creates an 11arithmetic/logical class 11 instl'uction mnemonic.

ASSEMBLER 6 l 0
I n s t r u c t i on nm emo n i c .

AS SF.NIBLER 20 1 0
Pops the high -·order byte of the top stack item into the high­

order byte of Register 'I' and pops the low-ordet· byte of the
top stack item into the accumulator. The stack pointer is
incremented by three. A code beginning.

FOR'l'H, l nc.

WORD

rm

DEC

DFL

DST

EPL

ELSE

ENO

ENTRY

GHI

GLO

I

IF

20 August Ul'l8
COSMAC GT ,OS SARY

VOCABULARY SCREEN STACK: IN OUT

ASSEt\111LER 8 1 0

Page 2

G i v en an a d cl r e s s , a s s emb l c s a s ho t' t u n con d i t i on a l b r a n c h t o
that address.

ASSEMBLER 6 l 0
Instruction mnemonic.

ASSTh'lBLER 8 0 0
A constant that will set the DF (cnrry flap; set) con<li t ion

code.

ASSE\1BLER 7 1 0
A mac1·0 that decrements the specified 1•egister, then stores

the contents of the accumulator at the address given by
the register.

ASSEMBLER 8 1 0
W i l l s e t o t c s t f o r t h e II c x t e r n a l f l a g s e t II i n t h e i n s t r 11 c -

tion. The value on the s(ack is the flag number (1 ·· 1).

ASSB\1BLER 8 l 1
Assembles a short unconditional forward brunch. Completes

the branch whose a<ld1•ess is on the stack and leaves its own
address.

ASS0\1BLER 8 2 0
Given a condition code on top of the stack and an address

b en ea t h , a s s emb l e s a s ho t' t con d i t i on a l b r an ch t o t h e
address.

ASSEMBLER
Dec la 1· es a wo r <l

in HERE 2 -
the ASSEMBLER
definition.

ASSEMBLER

'/ 1 0
such that, when invoked, its value is

'l'he new wo 1• cl can only be executed
v o c n b u l a 1· y and a t t h e beg i n n i n g o f a

6 1 0
Instruction mnemonic.

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER 6 0 0

placed
under
CODE

A constant that declares I , the inner interpreter pointer,
to be Register 12.

ASS.0.VlBLER 8
Given a condition code

conditional forward
branch on the stack;
branch on the stack.

1 l
on the s tack , ass ernb 1 es a short
b t' on ch. Le aves the lo cat ion of the

ELSE and THEN complete the

FORTH, Inc.

WORD

INC

INP

LD

LDA

LDN

LDX

LDXA

LS

NEXT

NOT

OR

OUT

p

PAGE

PHI

20 August 1978 Page 3
COSMAC GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

ASSEMBLER 6 1 0
I 11 s t L' LI c t i O 11 nmemon i c.

ASSEMBLER 6 1 0
Instruct ion nmemon i c.

ASSEMBLER G 0
Instruction mnemonic. Same as LDX .
ASS EMI3J, Ell G 1 0

Instruction mnemonic.

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER G 1 0
Instruct ion mnemonic.

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER 8 l 0
Given a condition code on the stack, assembles a con<l it i ona l

long sl<ip. Skips on condition true.

ASSEMBLER 7 0 0
Sets Register 15 to be the prog1·am counte1·. Registet' 15

contains the address of the inner interpreter. A code
ending.

ASSEMBLER 20
Reverses the value of the

ASSF.NlBLER 6
Instruction nrnemon i c.

ASSF.MBLEH G
Instruction mnemonic.

ASSEMBLER 6
A constant that declares

Register 3.

FORTH 4

1 0
condition code Oil the stack.

1 0

l 0

0 0
P , the program counter, to be

1 0
Verifies that there are enough bytes on the current page in

memory to contain the number of bytes specified by the top
of the stack; otherwise advances H to the next page.

Usage: ltbytes PAGE (new definition)

ASSEMBLER 6 l 0
Instruction mnemonic.

l<ORTI-1, [nc.

wonn

PLO

PUSH

PUT

Q

R

REQ

RET

s

SAY

SD

SEP

SEQ

SEX

SHJ,

SHR

20 August 1978
COSMAC GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

ASSEMBLER 6 J 0
I n st r u ct i on mn emo n i c .

ASSEMBLER 7 0 0

Page 4

A mac r o t ho. t de c 1· eme n t s t he s tack po i n t e r and pushes t he
contents of the accumulato1• onto the stack before pe1·form­
ing NEXT. A code ending.

ASS 0.VJBLER 2 0 t 1
p O p S l h C t Op S t U Ck i t Clll i II l O t he T

stock pointer positioned to the
of the stack. The low-order T
tor. A code beginning.

ASSF.Ml3LER 8 0

1· e g i s t c r u II d l ea v e s t he
I OW· · 0 l'Cl e I' by t C O f t he t Op

r emo. i n s i n the a cc umu l a -

A constant that will set the
0

Q condition code.

ASSEMBLER 6
A constant that declares

Register 14.

ASSEiVJBLER 6
Instruction mnemonic.

ASSEMBLFJl 6
Instruction mnernonic.

ASS~~BLER 6
A constant that declares

be Regis t e L' 13.

ASS~\18LEH 6
Instruction mnemonic.

ASSEMBLER 6
Instl'uction mnemonic.

ASSfl\lJBLER 6
Instruction mnemonic.

ASSFMBLER 6
Instruction mnemonic.

ASSEMBLER 6
Instruction mnemonic.

ASS&\1BLER 6
Inst I' UC ti on mnemonic.

ASSEMBLER G
I n s t 1· u c t i o n mnemonic.

0 0
R , the re tu 1· n s tack po i n t er , to be

1 0

1 0

0 0
s

'
the parameter stack pointer, to

1 0

1 0

1 0

1 0

l 0

1 0

1 0

FORTH, Inc.

WORD

SM

S'l1l

STXD

T

'!'HEN

u

VANISH

w

XOR

20 August 1978 Page 5
COSMAC GWSSAilY

VOCABULARY SCREEN STACK: IN OU'l'

ASSEMBLER 6
Instruction mnemonic.

ASS.0\llBLER 6
Instruction mnemonic.

ASSEMDLEH. G
Instruction mnemonic.

ASSEMBLER 6
A constant that declares

register.

ASSFMBLER 8

l 0

l 0

1 0

0 0
T to be Register !J, a scratch

1 0
Sets the addt·ess of a short conditional fo1·wa1·d jump in the

dictionary.

ASSHVlBLER 6
A constant that declares

Register 4.

0 0
U, the user pointer, to be

FORTH 4 0 0
Removes the ent i t'e ASSEMBLER vocabulary from memory.
ASSIMBLE LOAD wi 11 restol'e the ASSENIULER vocabulary in

memory.

ASSEMBLER 6
A constant that declares

Reg i s t e 1• 11 .

ASSEMBLER 6
Instruction mnemonic.

0 0
W , the cul'l'ent word pointer, to be

1 0

APPENDIX C -~ - - -
micrnFORTH GLOSSARIES

This glossary includes all words, definitions, and sc1·een assignments tho t are
common to all CPUs. Because of the flexibility of the FORTI-I language,
however, you may find a few exceptions on your diskette. These will have been
caused by our progrnmrners' making improvements to the microFORTH system
you have received.

Please check your microFORTH screens, therefore, when you want to vel'ify that
words (especially in the lower-numbe!'ed screens) exist in the same screens as
listed here. This would also be an excellent time fo1· you to begin building an
application glossary for use by your staff.

\Vithin this glossary the!'e are also a few words whose exact behavi01· varies from
chip to chip because the implementation of each is machine dependent. The end
behavior of these words, however, is the same on all machines; the most obvious
variations of implementation occur in M * and M/MOD . They a!'e used by
*/ /MOD */MOD and MOD Do not use M* and M/MOD unless
you understand exactly how these wo!'ds modify the stack pointer on yom·
particular CPU. Use */ /MOD */MOD and MOD to perform the
appropriate orithmetic.

Appendix B contains words associated with assembly language and thus dependent
on yoUI' type of development hardware. For details concerning the mnemonics,
see Appendix A.

Short glossaries for the m icroFO R'fl-1 vocabulal'ies that pel'tain only to Options
(such as Extended-Precision Math or File Management) are provided with the
options when the number of wo1·ds warrants it.

The order followed here is that. of the ASCII charocter codes.

FOR'l'H, I n c •

WORD

II

#>

#LEFT

ff S

'S

(

(.)

20 August 19'/8
MICHOFORTH GLOSSARY

VOCABULARY SCREEN STACK : IN OUT

FORTH 0 2 0

Page 1

Stores the second number on the stack into the address which
is on the top of the stack. For example, if VALUE is a
VARIABLE then 32r/6'/ VALUE ! chang·es VALUE to 32767.

EDITOR 1'1
Used to enter n 1 ine

termino.ted by the
Usage: 11 TEXT 11 1
Th i s ex amp 1 e i n s er ts

FORTH 12

0 0
0 f t e X t i 11 t O p AD j t he t e X t i S

delimiter "
I
TEXT i 11 Li ll e 2 0 f t he C ll l' r e 11 t S C I' e C 11 •

1 1
Converts the least significant digit of a 16-·bit binal'y number

to its ASCII equivalent using the current I3ASE. The ASCII
character is placed in the output string.

FORTH 12 2
Terminates the pictured numeric output, leaving the byte count

o f t h e s t r i n g on t op o f t he s t a ck and i t s add 1· es s be n ea t h
for TYPE.

EDITOR 21 0 1
Computes the number of ch a 1· a c t er s r ema i n i n g i n the source

text line.

FORTH 12 1 1
Converts any remai11ing digits of a 16-bit binary number on the

stack to their ASCII equivalents, using the cul'l'ent BASE.
The ASCII characters are placed in the output string. At
1 ea s t one d i g i t w i 1 1 be con v e r t e d i f the numb e r i s z e 1· o .

FORTH 11 0 1
Places the add!'ess of the parmneter field of the next word in

the current input stream onto the top of the stuck.
Searches first the CONTEXT vocabulal'y, then the CURRENT
vocnbul1ny, before giving an error message.

FORTH 10 0 1
Places the addl'ess of the top of the stack on the stack,

i.e., the address of the top of the stack before 'S was
invoked.

FORTH 3 0 0
Begins a conment, which is terminated by) • Cormrnnts are

ignored by the system and may appear inside or outside a
definition. They may not, however, cross an even line
boundary in soul'ce text screens.

FORTH 1?, 1 2
Converts a sixteen-bit signed number on top of the stack to

i ts ASC I I e q u i v a 1 en t , l ca v i n g the byte co u n t of the s t r i n g
on the top of the s tack a 11 d i ts ad cl 1· es s be 11 ea th fol' TY PE .

Used by (i.e., dot).

FORTH, Inc.

WORD

(MAHI{)

(MATCH)

(MATCH)

(MOVE)

(NUMBER)

(THEN)

*

*/

*/MOD

+

+!

+LOOP

20 August 1978
MICROFOR'l'II GLOSSARY

VOCAOUI,i\RY SCREEN STACK: IN OUT

FOR'I'II 9 1 0

Page 2

Compiles a backward jump 111 a logical structure.

FORTII ?. ?. 4 ?,

Usage: stl'ing···A count st,·ing-B count (MATCII)
Counts must be <?.56. Searches for the 1st occurrence of A in

B. Returns the end byte plus l of the mntched string in 13
and a truth value: zero if no match and non--zcro if match.

ED I TOH. ?. 2 '1 ?.
In the EDI'l'OR vocabulary on COSMACs only. Behaves like the

FORTII vocabula1•y (MATCII) •

FORTH
Only exists

COSMACs.
move to

22 3 0
on 6800s and COSMACs; in the EDITOR vocabulary on

Same as MOVE except there is an intermediate
IIERE

ftOR'I'H 10 1 2
Same as NUMBER except that the ASCII string may begin with a

minus sign. Also, if the terminating character is not a
s [)ace, (NUMBER) w i 11 ex i t w i th an error message • The to[)
o f t he s t a ck i s e i t h e r t h e t e rm i n a t o r o 1· g a r b a g c .

FORTH 9 1 0
Completes a forward jump in a logical structure.

FORTH 5 2 1
Performs an unsigned multiply of the low-order byte of the top

numb e ,. on the s tac I< w i th the s i x teen - b i t number beneath i t ,
leaving a sixteen-bit product.

FORTH 5 3 1
Multiplies the second and third numbei·s on the stack, then

divides by the top number, leaving the quotient on top
of the stack. This is an unsigned operation with a
twenty-three-bit intermediate result.

FORTH 5 3 2
Mu l t i p 1 i es the second and th i rd number s on the s tack , then

divides by the top number, leaving the quotient on top of
t he s t a ck and the r ema j n de r be n ea t h . Th i s i s an u n s i g n e d
operation with a twenty-three-bit intermediate result.

FORTH 0 2 1
Replaces the two numbers on the stack by their sum.

FORTH 0 2 0
I n c 1· eme n ts the s i x t e en - b i t wo 1· d whose add 1· es s i s on the to[) of

the stack by the amount in the second word of the stack.

FORTH O 1 0
Terminates the range of a DO LOOP. Increments the index

by an u n s i g n e d s i x teen-· b i t n urnb er on top of the s tack ,
removing the number. The loop is terminated if the new
i n cl ex e qua l s o 1· ex c e e d s t he l i mi t (u n s i g 11 e cl comp a L' e) •

FORTH, Inc.

WORD

+LOOP

- '

-DUP

--MOVE

··TRAILING

.R

I

/lvlOD

O<

Q:::

2 0 Aug u s t 1 9 'l 8
MICROFORTH GLOSSARY

VOCAUUJ ,ARY SCREEN S'l'ACK: IN OUT

FORTH 9 1 0

Page 3

Defines the compile-time behavior of +LOOP •

FORTH 0 1 0
Places the sixteen-bit value on top of the stack into the next

dictionary position (at IlEllE) and advances II by two.

FORTH 0 2 1
Sub t t· a c t s t h c t op s t n ck i t em f r om t h e s econ cl s t a ck i t em ,

l e n v i n r; t h c ct i f f e ,. e n c e on t. h c s t 11 ck .

FOHTI-I 0 0 2
Returns n nonzero value if the next wo1•d in the current input

s t l' e am cannot be found i n the d i c t i on a r y , and O i f i t can
be found. If the word is found, the second item on the
stack is the add1·ess of the word's parameter field.

FORTI-I 3 l 2
Rep r o ct u c es the top of the s t n ck on I y i f i t i s non - z e I' o .

FORTH 22 3 0
Same as MOVE except that the count must be less than 256 and

the block of memot·y is moved in reverse ordet·, beginning at
its highest address. (8080s and Z80s only.)

FORTH 13 2 2
Reduces the byte count on the top of the stack by the number

of trailing blanks found in the stt·ing whose address is the
second item on the stack.

FORTH 12 1 0
Outputs a signed sixteen-bit number from the top of the stacl<.

FORTH]_ 3 2 0
Outputs the second number on the stacl<, right-adjusted in a

field whose width is specified on the top of the stack.

FORTH 5 2 1
Unsigned division of the second word (full sixteen bits) of

t h e s t a ck by t h e t o I_) (max v 11 l u e 1 2 8) , l e 11 v i n g t he q u o t i e n t
on the top of the stack.

FOR'l'H 5 2 2
Perfot·ms an unsigned division of the second stack item by the

first, leaving a quotient on the top of the stack and a
remainder beneath.

FORTH O l. 1
If the top stack item is less then zero, replaces it with

one; leaves ~era otherwise.

FORTH O
If the top stack item equals

leaves zero otherwise.

1 l
zero, replaces it with one;

FORTI!, Inc.

WORD

l+

lLINE

2*

2+

8*

;CODE

;CODE

;S

<

<fl

<BUl LOS

20 August 1978 Page 4
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OU'l'

PORTH 0 1 1
Adds one to the top stack i tern.

EDITOR 21 0 l
G i v en a s t r i 11 g i 11 PAD , s ear ch cs f o 1· the s t r i n g i 11 t h c cur L' en t

line. J,eaves zero if the string is not found and one if it
is. Lenves the cu1·so1· positioned at the end of the matched
string or at the end of line if not found.

FORTH 0 1 1
Doubles the value of the top it em on the stack.

FORTH 0 1 1
Adds two to the top stack item.

FORTH 3 1 1
Multiplies the top value on the stack by eight.

FORTH 0 0 0
Creates a dictionary e11t1·y for the word following

the i n t e L' pre t c r i n to comp i l e mode •

FORTH
Termirrntes a

STATE

FORTH

0 0 0
definition. Toggles the user variable

4 0 0

Puts

Ends tl1e creation portion of a new defining word and begins
the code po r t i on (run - t i me be ha v i o 1·) of i t .

FORTH 0 0 0
When executed, sets the code address of the new wod to point

to the code that follows ;CODE .

FORTII 0
Ends the loading of
Within a definition

definition.

0 0
any screen in which ;S is executed.
causes an exit to the next outer

FORTH O 2 1
I f t h e s e c on d s t a ck i t em i s 1 e s s t ha n t h e t op , r e p l a c e s t h e

top two items on the stack with one, zero otherwise.
Th i s i s a l i mi t e d s i g n e d comp a L' e • Eq u i v a l c n t t o O < .

FORTH 12 0 0
Begins pictured numeric output. Sets IILD to PAD.

s ix teen - bi t bi n a 1· y number must be on the stack •

FORTH 3 0 0
Begins the compile - time behavior of a new 11lligh - level 11

defining word. Defined as O CONSTANT ; used with JX)ES >.

FORTH, Inc.

WORD

<R

>

?

?STACK

@

A

ABS

AND

ASSEl\i1BLE

ASSEMBLER

AT

u

20 August 1978
MICROfORTH GLOSSARY

VOCABULARY ~CREEN STACK: IN OUT

FORTH 0 l 0

Page 5

Removes the top item on the parameter stack and places it on
the top of the return stack.

FORTH O 2 1
lf the top two stack items are equal, replaces them with one;

leaves zero otherwise.

FORTH 5 2 1
I f t h e s e c on d i t em on t he s t a c I< i s p; 1· c a t e 1· t ha t l h e t op i t em ,

rep l aces b o th w i th one i l eaves zero other w i s e • Th i s i s
a limited signed compare. Equivalent to &'WAP o<.

FORTH 12 1 0
Outputs the contents of the word address which is on the top

of the stack. Equivalent to @. (dot).

FOR'l'II 10 0 0
Checks for stack underflow and ove1·flow and issues an error

message if appropriate.

FORTH 0 l 1
Replaces the addt·css on the top of the stack by the contents

of the two-byte word at that location.

EDITOR 14 1 0
I n the cur re n t screen , adds the l i n e of text that f o l l ow s A

AFTER the line number given. Line 15 is lost. The added
line remains in PAD.

FOR'rH 5 1 1
Replaces the top stack item with its absolute value.

FORTH 0 2]_

Pei· forms the logical sixteen - bit AND operation on the top
two stack i t ems .

FORTH 9 0 1
For COSMACs only, a constant which gives the load screen of

the ASSEMBLER vocabulary.

FORTH 0 0 0
Sets CONTEXT to the ASSEMBLER vocabulary.

EDITOR 21 1]_

Calculates the physical address in memory of the current
c u 1· s o 1· po s i t i on w i t h i n t h e c u r r en t s c r e e n •

EDITOR 21 0 0
Positions the cursor in front of the string just found. Used

in conjunction with F .

FOR'fll, Inc.

wrnm

0ACI<UP

DASE

DEGIN

DLANI<

DLI{

BLOCI<

DUFFER

C

C!

CII

c,

C@.

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACI<: IN OUT

DISI<ING 24 0 0

Pnge G

Copies an entire diskette frorn Drive O to Drive 1.

FORTH O O 1
A use1· vul'iable that contains the radix for number conversions

o n i n p LI t o I' o u t p u t . I t i s on e by t e 1 on g and i s LI s e d w i t h
C@. and C!

FORTI! 9 0 l
Mur!<s the beginning of 1111 indefinite loop which is terminated

by END • Lenves its ndclrcss on the stack.

FOR'l'H 22 2 0
Given an address in the second stack position and the byte

count (<256} on top, stores blanks into that region of
memo1·y. Also in the EDITOR vocabula1·y.

FORTH O O 1
A user vu 1• i u b I c that con ta i n s the number of the b 1 o ck

being interpreted during a LOAD. If BLK contains zero,
input is from the terminal. Overlaps the use1• variable
IN .

FORTH 3 l 1
Replaces the block number on the top of the stack by the

starting address of its block buffer in memory, adding in
OFFSET .

FORTH O O 1
Returns the udd1·ess of the block ID of a free block buffer.
The ID resides two bytes before the beginning of the block

buffer.

EDITOR 21 0 0
Inserts the string that follows C into the

beginning nt the current cursor position.
(at the end of the 1 ine} wi 11 be lost.

FORTH 0 2 0
Stores the eight-bit value i n the low -·01·de1•

item on the stuck into the address on the

EDITOR 21 0 1

current line,
Extra characters

byte of the second
top of the stack.

Calculates the character position of the cursor in the
cu 1· rent 1 i ne.

FORTH 0 1 0
P 1 a c es t he 1 ow- o 1· d e 1· by t e o f t h e t op o f t he s t a ck i n t o t he

next dictionary position at HERE and advances H by one.

FORTH O 1 l
Replaces the address on the top of the stack with its con -

t en ts . The hi g h - order by t e i s zero f i L 1 e d .

FORTH, Inc.

WORD

CODE

COtVIPILE

CONSTANT

CONTEXT

COPY

COUN'l'

CR

CREATE

CROSS

CURRENT

CVAHIABLE

CZ

2 O Aug us t 1 9 7 8
MICROFORTH GLOSSARY

VOCADULAllY SCREEN STACK: IN OUT

FORTH 4 0 0

Page 7

Begins a dictionary ent1·y for the word following it and cnte1·s
the ASSBVIBLER vocabulary.

FORTH O O 0
Changes the usei' variable STATE used by and ; •
(Changes the name field in the dictionary entry. The byte

changed is machine-dependent.)

FORTH O l O
A defining word which creates a dictionary ent1·y for n

sixteen -·bit value. When the name is invoked, the value is
p 1 a c e d o n t he t op o f t h e s t a c I< •

FORTH O O 1
A user val'iablc whose contents point to the vocabula1'y in

which searches begin.

EDITOR 14 2 0
Copies one sc1·een to another. The source screen is

u n ch an g e d . Us age : s o u r c e -· s c r e en de s t i n a t i on - s c r e e n CX) PY

· FORTH 15 1 2
Takes the address of a clrnracte1' string whose first byte is a

c ha r a c t e I' co u n t and 1· e p 1 a c es i t w i t h a ch a r a c t e r co u n t o n
top of the stack and the address of the first character
beneath. In Screen 16 on CX)SMACs.

FORTH 12 0 0
Sends a carriage return and line feed to the terminal.

FORTH 0 0 0
When executed, creates a dictionary header for the word that

follows it. Used in the definition of all defining words.

FORTH 19 0 1
A CONSTANT that places the load screen number of the c1·oss­

compiler on the top of the stack.

FORTH O O 1
A user variable whose contents point to the vocabulary in

which new definitions a1·e added. The CURRENT vocabulat'y
is searched when the search of the CONTEXT vocabulary
ends.

FORTH 4 1 0
A defining word which creates a dictionat'y entry for an

eight - bit value. When the CVARIADLE name is invoked, the
address of the value is placed on the top of the stack.

FORTH 0 0 1
Places one byte of zero on the stack. Increments the stack

pointer by one byte.

FORTH, Inc.

WOHD

D

DECIMAL

20 August_ 19'/8
MICROFORTH GLOSSARY

VOCAUUJ,ARY SCREEN STACK: IN OUT

EDITOR 14 l 0

Page 8

I 11 t h e C ll I' l' e 11 t S C I' e C ll , d C l C t C S t h C } i ll C S p e C i f i Cd O ll t h C t Op

o f t h c s t n ck and p l a c e s i t i n PAD . Su cc e e d i n g l i n e s a r e
moved up; Line 15 i s d ll p 1 i cat ed.

FORTll 5 0 0
Se t s f3A 8 E t o r ad i x t cm f o l' numb e 1· con v e t' s i o n •

DEFINITIONS FORTH 11 0 0

DELETE

DEVICE

DI SIU NG

DO

00

DOES>

DOWN

DRO

DRl

DROP

Sets CUllRENT to C'..,ONTEXT. Used to spec i f y the vocabulary in
which definitions will be entered.

EDITOR 14 l 0
Stores ~ct·o into the first two bytes of the specified screen

to mark the screen as unused. This screen then will not be
listed by INDEX , SHOW, or TRIAD in the PRINTING
utility.

PRINTER l 'l O 0
Ma I' k S t h C 1 0 8 d p O i n t f O I' t he PR I NTEH. VO Cab LI l a I' y •

able on COSMACs.)
(Not avail-

FORTH 19 0 l
A CONSTANT that gives the load screen number of the DISKING

utility.

FORTH 9 0 0
Defines the compile-time behavior of 00

FORTH O 2 0
Begins a finite loop whose index (the top stack item) and

l i m i t (t he s econ d s t a c I< i t em) a r e mo v e d t o t he r e t u r n s t a ck
when it is invoked.

FORTH 0 0 0
A defining wol'd which marks the beginning of the run -· time

portion of a new defining word. Used with <BUILDS.

DISKING 24 2 0
See RIGHT •

FORTH 19 0 0
Sets the user va1·iuble OFFSET to ze1·0 for absolute access

by BLOCl{ and LI ST •

FORTH 19 0 0
Sets the user va1°iable OFFSET to 2000 f 01' relative access

Drive 1 by BLOCK and LIST .
FORTH 0 1 0

Removes the top it em from the stack.

to

FORTH, Inc.

WORD

DUMP

DUP

ECHO

ECHO

EDIT

EDITOR

ELSE

ELSE

END

END

ERASE

ERASE··CORE

ERR

20 August 1978 Page 9
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 13 2 0
Outputs the values contained in a specified region of memo 1· y.

Usage: s t a r t - add 1· count DUMP

FORTH O 1 2
Duplicates the top of the stack.

FORTH 15 1 0
Sends the character in the low-order byte of the top stack

i t em to th c t c rm i n a 1 •

PRINTER 1 'l 1 0
Sends the character in the low--ordcr byte of the top stack

i tern to the printer device. (Not available on CDSMACs.)

FORTH 19 0 1
A cons t an t t ha t i s t he l o ad s c r e en numb e 1· of t h c ED I 1DR

vocabulary. For CDSMACs only.

FORTH 14 0 0
Sets CDNTEXT to the EDI1DR vocabulary. It is IMMEDIATE

s o th a t i t may be i n v o k e d i n s i de a de f i n i t i on .

FORTH O 1 1
Used within the IF ... THEN stl'ucture, ELSE

"false" pal't. The words that fol low ELSE
if the top stack item was zero (false) when
invoked.

FORTH 9 0 0
Defines the compile-·tirne behavior of ELSE.

FORTH 0 1 0

begins the
are executed

IF was

Terminates an indefinite loop started with BEG[N. Retu1·ns
t o t he s t a r t o f t he l o op i f t he t op s t a ck i t em i s z e r o
(false); terminates the loop if the top stack item is
non -·zcro (true). (Not available on 6800s.)

FORTH 9 0 0
Defines the compile-time behavior of END •

FORTH 4 2 0
G i v en t he by t e co u n t on t op o f t h c s t a ck and t he add 1· e s s

beneath, stores ze1·os in a region of memory.
Usage: stal't-ad1·. count ERASE

FORTH 3 0 0
Stores zeI•os in all the block buffers. Does not write to disk

any block buffers marked for writing.

EDI1DR 21 1 0
Uses the er r o 1· con d i t i on code on top o f t he s t a ck ; i f t r u e ,

moves text from PAD to HERE and invokes O QUESTION .

FOH.TH, Inc.

worm

ERROR

EXECUTE

EXPECT

F

FI J ,J,

FIND

FLUSH

fM'l'

FORGET

FORTH

GAP

H

20 August 19'/8
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

DISKING 2G 0 1

Page 10

Leaves the value of STAT0S masked fol' el'ror bits.

FORTH 0 1 0
Executes the word whose panuneter field address is on top

of the stack.

FORTH 16 2 0
Inputs , f 1· om the term i n al , the n urnb er of ch a r act er s spec i f i e d

on top of the stack and places them into memory at the
address given beneath, followed by 2 nulls. The string is
ended when the count is exhausted or by a car 1· i age l'e turn.

EDI'IDR 21 0 0
CUl'l'ent Beg i n n i n g a t t h e c u 1· l' en t cu 1· s o r po s i t i on i n t h e

sc1·een, searches fo1· the string that follows
the cursor positioned imnediatcly afte1· that

Multiple lines are searched.

F and lenves
s t 1• i n g •

DISKING 24 0 0
Sets a non--2e r o value into the block IDs of the disk block

buffers. Used to force the operating system to Pead cl is k
Block 0 from disk.

EDI'IDR 21 0 0
Searches each line of the curl'ent screen, beginning at the

current cursol' position for the string in PAD Prints
an er1·or message if the string is not found.

FORTH 3 0 0
Forces all updated blocks to be written to disk.

DISKING 24 0 0
Formnts the disk on Drive 1 (where npprO[Hiate).

FORTH 11 0 0
Physicnlly forgets, at execute time, ell dictionary entries

after and including the word specified in the current
input stream.

FORTH 11 0 0
The name of the inne1·most vocabulnry. Sets CONTEXT to

FORTH. It is IMi\1EDIATE so that it mny be invoked
inside a definition.

EDITOR 14 1 1
In the cur1·cnt sc1•een, pushes all lines that occur AFTER

the specified line clown one.

FOH.TH O O 1
A u s e 1· v a 1· i ab 1 e t ha t co n t a i n s t h e ad cl r e s s o f t he t op o f t he

di Ct i ona1·y. See HERE ,

FORTI-I, Inc.

WORD

HERE

HEX

IIJ,D

HOLD

HOLD

IF

IF

IMMEDIATE

IN

IN-· LINE

20 August 1978
MICROFORTH GLOSSARY

VOCM3ULARY SCREEN STACK: IN OUT

FORTH 0 0 1

Page 11

Places on the stack the address of the next available
by t e a t t h c t op o f t he d i c t i o 11 a r y . Se e I-I ,

FORTH 5 0 0
Sets BASE to radix s i x t cc n f o 1· 11 umber con v er s i o 11 ,

FORTH 12 0 l
A var i ab 1 c th a t po i n ts at the mos t 1• e cent ch a I' act er o f the

output string during pictured numeric output.

EDI TOH. 14 1 0
Transfers the line whose number is on the top of the

stacl< to PAD.

FORTH
Decrements HLD

of the stack
output. See

ED I TOR

12 1 0
and places an /\SCI I character that is on top

into the output stl'ing during pictured numeric
< # , # and tt > .

14 l 0
In the current screen, inserts the line that is stored in

PAD into the line thnt follows the one whose numbe1' is
on top of the stack. Succeeding lines arc pushed down;
Line 15 is lost.

FORTH 0 0 1
Copies the top of the return stack onto the parameter stack;

it does not al tel' the return stacl<.

FORTH 0 1 0
Begins a conditional structure. Executes the words that im-

mediately follow IF when the top of the stack is true
(non-zero); otherwise skips to ELSE (if p1•esent) or THEN
(if there is no ELSE) 01· WHIJ,E (instead of THEN),

FORTH 9 0 1
Defines the compile-time behavio1· of IF.

FORTH 3 0 0
Marks the word most recently defined as a compiling word.
The wo1•d is executed when encountered inside of a

definition.

FORTH O O 1
A user v a 1· i ab l e t ha t po i n t s to t he re 1 a t i v e l o ca t i on i n t he

input stream. IN ovcl'laps the use1· variable 13LK.

FORTH 11 1 0
G i v en a numb e 1· on t he t op o f t h e s t a ck , comp i l es i t a s a

sixteen-bit literal.

FORTH, Inc.

WORD

IN-·LINE

INC

INDEX

INTERPRET

J

KEY

L

L#

LEAVE

LEFT

LF

LINE

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCREEN STACK: IN OUT

FORTH 0 0 1

Page 12

Puts a sixteen-bit lilcnll on the stock at run time.

DISKING 24 0 1
A constant that gives the block increment for RIGHT and

SWEEP . Must be an odd number.

PRINTING 2'7 2 0
Types the fil'st line of each screen in the range given, sixty

lines ton pnge. The copyright and hending n1•c at the
base of each page.

Usage: start--screenl# end - screen# INDEX .

FORTH 0 0 0
Outer inteqHeter loop; scans and searches fo1· a word (to be

compiled or executed, depending on STATE and precedence)
i n t he d i c t i on a t' y . If no t f o u n d , con v e r t s numb e r and com -­
i le s literal form if in compile mode.

FORTH 4 0 1
Puts the index of the outer of two nested DO ••• LOOPS on

the stack, Only the indices of the two innermost nested
loops are available. In Screen 5 on COSMACs.

FORTH 16 0 1
Receives and places on the stack a single character from the

keyboard . In Screen 15 on COSMACs.

FORTH 13 0 0
Lists the screen specified in the user variable SCR.

EDITOR 21 0 1
Calculates the line number of the cursor in the current

screen. Implementation is machine - dependent.

FORTH 4 0 0
Sets the 1 i rn i t of a DO LOOP equal to zero so that a loop

w i 11 be terminated. Implementation is machine - dependent.
In Screen ,.

;) on COSMACs.

DISKING 24 2 0
See RIGHT

PRINTING 2 '/ 0 0
Sends one l i ne feed.

EDITOR 14 1 2
G i v en the 11 umber of a l i n e i n the cu I' re 11 t s c I' e en on the top of

the stack, returns a character count of sixty-four (on top)
and the address of the line beneath. The line number is
masked by fifteen.

FORTH, Inc.

WORD

LINE

LIST

WAD

LOG

LOOP

LOOP

M

M*

M/MOD

MATCH

MAX

MESSAGE

?.0 August 1978
MlCROFORTH GLOSSARY

VOCAOULARY SCREEN STACK: IN OUT

FORTH 13 2 ?.

Page 13

Given 11 line number beneath and a screen number on top of the
stack, calculates the bloc!< address with 11 count of 64 on
the top of the stack. Can be used by TYPE or MOVE .

FORTH 13 1 0
Lists the screen whose number is found on the top of the

stack and places the screen number in SCH

FORTII 3 1 0
Oegins intcrprctat ion of source text in the screen whose

number i s on th c top of the s tack •

DISKING 26 1 0
Logs a disl< error by typing the block number that is on top of

the stack, followed by the disk error message and the erI·0I·
St 11 t us,

FORTH O O 0
Terminates the range of a 00 LCX)P. Increments the index

by one and exits if the index equals or exceeds the limit.

FORTH 9 1 0
Defines the compile ··time behavior of LOOP.

EDITOR 21 1 0
Given a count, moves the cuI•sor forward (positive) or backward

(neg a t i v e) . The l i n e t ha t con ta i n s the cu r s or i s sen t t o
the terminal.

FOR'fH 5 2 2
Multiplies the top two values on the stack, leaving

a twenty-four-bit product. The output fo1•mat is chip-
dependent. See M/MOD •

FORTH 5 3 2
Divides a twenty-four-bit number by

leaving the remainder on top and
The input format is chip-dependent.

D I SK I NG 2 5 2 0

the top stack item,
the dividend beneath.

See also M* .

Usage: start-screen# end-screen#-plus-1 MATCII
Compares between ORO and DRl; does not match screens if both

begin with 0. On the first mismatch, types sc1•een# and
a pp r ox i ma t e l i n e # (r e l a t i v e b 1 o ck * 2) o f t he m i s ma t c h •

FORTH 5 2 l
A limited s ignecl compaI·e between the top two values on the

stack that leaves the largest value on the stacl<.

FORTH 10 1 0
Types on the te1·minal a specified line relative to the start

o f Sc r • 2 3 • Om i t s t L' a i l i n g b l an I< s . Us e s Sc r . 2 3 u s t h e
logical base, i.e., Message 16 is Line 0 of Ser. 24,
Message 3?. is Line 0 of Sci·. 25, etc.

FORTII, Inc.

WOHD

MESSAGE

MIN

MINUS

MOD

MOVE

MSG

MSG

N

ND

NEW

NOT

NOTIFY

NUMBER

20 August 1978
MICROFOR'l'H GLOSSARY

VOCAl3UJ,AllY SCREEN S'l'AC!{: IN OUT

PRINTER l 'l 1 0

Page ltl

Same as MESSAGE i n t he FOR'l'II vocab u 1 a l' y . (Not available on
COSMACs.

FORTH 5 ?. 1
Al imited signed compare between the top two values on the

stack that leaves the smaller value on the stnck.

FORTH 0 1 l
Replaces the top of the stncl< by its two's complement.

FORTH
,.
.) 2 1

Divides the top stack item into the value beneath i t ' leaving
the remainder on the top of the stack.

FORTH 0 3 0
Moves a specified region of memory to anothel' region of

memory; moves the locations with lower add!'esses first.
The source area remains unchanged.
Usage: source-addt·. dest.-addr. byte-count MOVE

FORTH 15 0 0
Defines a wo1·d that will type out the string· that follows it

i n t he d i c t i on a r y . Th c s t r i n g i s p r e cede d by a ch a 1· a c t e r
count. In Screen 16 on COSMACs.

PRINTER 17 0 0
Sets ASCII character codes into a named definition in the

dictionary. (Not available on COSMACs.)

EDITOR 21 0 0
Finds the next oecunence of a string (found with an F)

in the current screen.

DISKING 24 0 1
A constant that gives the numbet· of block buffers.

DISKING 24 0 1
A constant that gives the f i I'S t block number on Drive l.

FORTH 5 1 1
Reverses the truth value of the top of the stuck.

Identical to O=

D I SK I NG 2 6 1 1
Er as es t he b 1 o e k ID i n t h e bu ff e 1• w h o s e add r e s s i s on t op o f

the stack ofter first fetching the block number contained
i n the ID. 1 n v o I< es LOG w i th the block number and returns
the number less the contents of OFFSET to the stacl<.

FORTH O 1 2
Given the starting address less 1 of a numeric ASCII string on

the stuck, converts the string to binary according to the
c u l'l' e n t v a l u e o f BASE and 1 e a v es i t i n t h e s e c o 11 d s t a ck
entry. The top item points to the non--nume1·ic terminator.

FORTII, Inc.

WORD

OCTAJ,

OFFSET

OK

OVER

PAD

PllINTER

PRIN'l'hll

PRINTING

QUESTION

QUIT

H.

ll

20 August 1978 Page 1 5
MICROFORTI-1 GLOSSARY

VOCAUULAH.Y SCREEN STACK: IN OUT

FORTH r·
;) 0 0

Sets BASE to radix eight f Ol' number conversion.

PORTH 3 0 1
A user variable whose contents are acldecl to block numbers in

BLOCK to determine the physical block number.

FORTH l 5 0 0
Types the clrnracters O, K, carriage return, and line feed. In

Screen 16 on COSMACs.

FORTH 0 2 3
Copies the second item on the stack onto the top.

EDI'IDR 14 1 0
Places the line of text that follows P into the specified

line. The previous content of the line is lost. The
11 put 11 1 i n e r ema i n s i n PAD.

FORTH 12 0 1
The starting address of a holding buffer, PAD resides

sixty-five bytes above HERE and moves as definitions are
added to and deleted from the dictionary.

FORTI-I 19 0 1
A constant that places the load screen numbet· of the PRINTER

utility on the stack. (Not available on COSMACs.)

PRINTER 17 0 0
Same as CR. (Not available on COSMACs.)

FORTH 19 0 1
A constant that places the load screen number of the PRINTING

utility on the stack.

FORTH 10 1 0
Repeats the lo.st word executed by the text interpreter (found

at HERE) and issues an error message as sµecified by
MESSAGE, then empties both stacks and returns control to
the operator. No OK is issued.

FORTH 16 0 0
Emp t i e s t h e r e t u 1· n s t a ck an d r e t u r n s con t r o 1 t o t he

operator. No OK is issued.

EDITOR 14 1 0
Replaces the line specified on the top of the stack with the

contents of PAD.

fcORTH 4 0 1
A constant that gives the address of the return stacl< pointer.
For COSMACs, in the ASSEMBLER vocabulary.

FORTH, Inc.

WOHD

H. !

R#

R>

REMOVE

RIGHT

ROT

S!

so

SCR

SHOW

SIGN

SPACE

20 August 1978
MICROFORTH GLOSSARY

VOCABULARY SCllEEN STACK: IN OUT

FORTI-I 16 l 0

Page 16

Moves the contents of Register U to Register R (i ,e., resets
the return stack). On COSMACs only.

FORTH 13 0 1
Us e L' v a l'i Rb 1 e w h i ch co n t a i n s t he c ha I' u c t e r po s i t i o n o f t he

cursor in the ffi)ITOR. When file management is in the
sys t em R # i s the record number of th c current l y accessed
l' C CO rd,

FORTH 0 0 1
Removes the top of the return stack and places it on the

parameter stack.

EDI'IDR 21 1 0
Given the character position of the beginning of the string

to be deleted, deletes those characters on the line (up to
t he cu 1· r e n t cu r s o r po s i t i on) and mo v e s a l 1 ch a r a c t e r s up .

Trailing blanks are added at the end as needed,

DISKING 24 2 0
Cop i es the range of screen g i v en fr om Dr i v e O to Dr i v e 1.
Us a g e : s t a r t - s c r e c n # en d --s c r e en # - p 1 u s - 1 R I G HT
May be called UP , DOWN , or LEFT .

FORTH 0 3 3
Rotates the top three stack items, putting the third stack

item on the top. On 6800s ROT resides in Screen 5.

FORTH 10 1 0
Sets the address of the current stack pointer to the one given

on the stack.

FORTH O O 1
A user VARIABLE that contains the address of the bottom of

the parameter stack and the start of the input message
buffer.

FORTH 13 0 1
A user variable that holds the current ED I'IDR screen number.

PRINTING 27 2 0
Types TRIADs of screens i 11 the inclusive range given.
Usage: start-screen end-screen SHOW

FORTil 12 2 1
Places a minus sign in the pictured numeric output string if

the second word on the stack is negative. Deletes this
second word on the stack but retains the top word.

FORTH 12 0 0
Sends a single space (blank) to the terminal.

FORTH, Inc.

WOHD

SPACES

STATE

STATUS

STRING

SWAP

SWEEP

T

TASK

TEXT

THEN

THEN

TILL

1DP

20 Aug·ust l9'l8
MICROFORTH GLOSSARY

VOCABUI,ARY SCREEN STACI(: IN OUT

FORTH 12 1 0

Page 17

Sends the number of spaces that is desi~tHlled by the top

A

stack item. May send zero spaces.

FORTH
user VUI' i ab 1 e,

interpreter is

0
one

in

0 1
byte wide, that indicates whether the
compile or execute mode.

DISKING 2 G 0 1
Returns on the stack t h c d i s k s t n t II s as o f t he 1 as t ope I' a to I' •

EDI TOH. 21 0 0
Sc ans ch a r a c t e r s i n t h e i n p u t s t r e am u n t i 1 t he de 1 i m i t i n g

chnracter (the low-orde1· byte on top of the stack or a ca1·-
riage return) is encounte1·ed. Rcods charocters from the
terminal into PAD with a leoding count.

FORTH 0 2 2
Exchanges the top two stack items.

DISKING 24 2 0
Reods eoch screen in the range given to check for disl< et·rors.
Usage: start --screen# end-screen#-plus-·1 SWEEP

EDITOR 14 1 1
Types t he 1 i n e spec i f i e d (on t he top o f the s t a ck) o f t he

current screen and tl'ansfers it to PAD. The 1 ine number
is left on the stack.

FORTH 3 0 0
Murks the beginning of the applicotion vocobulary.

FORTI-I 13 1 0
Scans characters in the input stream until delimiter (low­

order byte as top stack item or carriage return) is encoun-
tered. Leading occurrences of the delimiter nre skipped
over. Input is placed in PAD and is blank filled.

FORTH O O 0
Marks the end of an IF ... THEN structure.

FORTH 9 0 0
Defines the compile-time behavior of THEN .

EDI'lDR 21 0 0
l3eginning at the current cursor position on the current line,

deletes all characters up to and including· the st1•ing
that follows TILL

ED I '!DH. 14 0 0
Po s i t i on s t he cu 1· so r a t the beg i n n i n g· of t he cur r en t s c r e en •

FORTII, Inc.

worm

TRIAD

TYPE

TYPE

u

U*

U/

UP

UPDATE

USER

VARIABLE

VOCABULARY

?.O August 1978
MICHOFORTII GWSSARY

VOCAl3UI,L\RY SCREEN STACK: IN OUT

PRINTING '1. 'I 1 0

Page 18

Types a set of three screens, ~iven one screen number, The
screen number mny be any of the three screens on a page;
the top screen i s always the screen numb e 1• mod u I o
t h r e e . Copy ri g h t n n d head i n g a pp ca r a t page b o t t om .

FORTH 15 2 0
Us es a · ch a r a c t e ,. co u n t on t op o f t he s t a ck and an a cl d 1· e s s

beneath to send characters to the terminal. May TYPE
zero characters. In Screen 16 on COSMACs.

PH. I N'l'ER 1 7 ?. 0
Uses a character count on top of the stack and an address

beneath to send characters to the printer device.
(Not available on COSMACs.)

FORTH 4 0 1
A con s t a n t t ha t g i v e s t he a d d 1· e s s o f t he po i n t e r t o t he s t a 1· t

of the user area. Fo1• COSMACs, in ASSEMBLER vocabulary.

FORTH O 2 1
Unsigned multiply of the low-order bytes of the top two words

on the stack, leaving a sixteen-bit product.

FORTH 0 2 2
Unsigned divide of the second word on the stack by the top

wo1·d, leaving a quotient on top and a 1·emainder beneath.

DISKING 2 0
See RIGHT.

FORTH O O 0
Mark s the last buffer returned by BLOCK for writing. The

b l o c le i s r e w r i t t en on t h e d i s k e i t h c r by t he n ex t FLU SH
or automoticolly when the buffer is needed for another
block.

FORTll O 1 0
A defining word, used to name locations at fixed relotive

addresses within the user areo.

FORTH
A defining woi•d

sixteen-bit
the address
stack.

FORTH

4 1 0
that creates a dictionory entry for a

value. When the VARIABLE name is invoiced,
of the value is placed on top of the

11 0 0
Defines a word whose parameter field plus two points to the

most recent entry of that vocabulary's set of definitions .
Executing a vocabulary name points CONTEXT to that vocnbu­

lary's parameter field plus two.

FORTH, Inc.

WOIU)

WHILE

WI-II f,E

WORD

X

[

[

[•]

[BLOCK]

[SWAP]

\.

eot

20 August 1978
MICROFORTI-1 GLOSSARY

VOCAUULAHY SCREEN STACI(: IN OUT

FORTH 0 0 0

Page 19

Terminates an indefinite loop of the following fo1·rn:
BEGIN (condition) IF WHILE or BEGIN (condition) IF ELSE WHILE
Allows n test at the beginning of an indefinite loop.
(Not available on 6800s.)

FORTH 9 2 0
Defines the compile-time behavior of WHILE .

FORTH O 1 0
ltcads forwnt·d in the cunent input stl'cam until the delimiter

given on the stack. The byte count and text are stored at
HERE with the byte count in the fi1·st byte.

EDITOR 21 0 0
Beginning at the current cursor position, searches for and

deletes the string that follows X. Multiple lines are
searched.

FORTH 13 0 0
Define s the run-time behavior of L, which types out text on

the CRT. The s t r i n g res i des i n the d i c t i on a r y , preceded by
n count. It was laid down at compile time by use of the
comp i l i ng word [

FORTH 13 0 0
A compiling word which causes the stl'ing of chat·acters until

the delimiter J, following it to be typed when the defined
word is invoked.

FORTH 0 0 1
During compi lotion, pushes onto the stack the sixteen - bit

value that follows it.

FORTH 1 1 0 0
Defines the compile-time behavior of [•] .

26 1 1 DISKING
Invokes

times.
BLOCK and , i n ca s e o f r ea d er r o r s , r e t r i es up t o t en

I n v o k e s LOO f o r a 1 l b u t t h e 1 a s t 1· e t 1· y .

FORTH 11 1 1
A compiling word which swaps the top two words of the stack

during compilation.

FORTH O O 0
A compiling word that places the address of the word that

follows it into a new definition. Used to help define the
run-·time and compile - time behavior of a compiler word.

FORTH O O 0
An ASCII null character that terminates scanning in the

current input stream. Null controls the sequencing of
the block buffers of a screen .

