The contents of this document are the intellectual property of FORTH, Inc. and are protected by copyright. This document is provided free of
charge for personal, non-commercial, and academic uses. You may not redistribute this in any form without permission from FORTH, Inc.

microFORTH TECUNICAL MANUAL

FORTH, Inc.
815 Manhattan Avenue

Manhattan Beach, CA 90266

(213) 372-8493

August 1978

Version 3
for RCA COSMAC

Copyright 1976, 1978 by FORTH, Inc.

Version 3 (revised Appendices)
987654321

This book was produced by use of the textfFORTH System.

FORTH and microFORTH are trademarks of FORTH, Inec.

All rights reserved. No part of this book may be reproduced in any form or by
any means, electronic or mechanical, including photocopying, recording, or by an
information retrieval system, without permission in writing from:

FORTH, Inc.

815 Manhattan Avenue

Manhattan Beach, CA 90266

TABLE OF CORNTENTS

1.0 INTRODUCTION

1.1

1.2

Klemenls of FORTH
1.1.1 Dictionary
1.1.2 Stack
1.1.3 Cede
1.1,0 High level definitions
1.1.5 Blocks
Keybeoard Input

2.0 USE CF THE STACK

2.1
2.2

Parameter Stack

Return Stack

3.0 NUMBERS AND VARLABLES

3.1
3.2
3.3
3.4

Numbers
VARIABLEs and CONSTANTs
Arrays

USER Varilables

4.0 ARITBMETIC
5.0 COMPILER

5.1
5.2
5.3

5.1
5.5
5.6

5.8
5.9

lLiterals

Logical Flow

DO-LCOPs

5.3.1 Examples of DO-LCOPs
GEGIN, .. .END Loops
Conditicnals

Special Loops

5.6.1 LEAVE

5.6.2 WHILE

Special Literals

5.7.1 Use of (']
5.7.2 Use of IN-LINE
Extending the Compiler

Memory Usage and Timing

NN

= = e

L

-3

12
14
Y
16
17
18
19
23
23
2l
2l
25
29
29
31
31
33
31U
34
35
35
37

microFORTH TECHNICAL WMANUAL

6.0 BLOCK 1/0
6.1 Error Checking
7.0 TEXT ED1TOR
7.1 Text Editing Utility
1.2 Program lListing Utility
7.2,1 Index listings
T7.2.2 Program screen listings
8.0 OUTPUT
8.1 Right-Adjusting Numbers
8.2 Custom Number Formatting
8.3 Text Qutput
9.0 FORTH PROGRAMMING TECHNIQUES
9.1 Overlays
§.2 Diagnostics
9,3 Testing
9.4 Top-Down Design
10,0 THE FORTH DICTIONARY STRUCTURE
11.0 THE INTERPRETER

11.1 Interpreting a String of Words Typed at the Terminal

11,2 Interpreting Source Blocks
11.3 Compiling Definitions
11,4 Executing Definitions
11.% Inner Interpreter Control
12.0 THE ASSEMBLER
12.1 Code Endings
12.2 Notational Conventions
12.3 Macros
12.4 Example
12.5 Logical Structures
12.6 Device Handlers
12,7 Time and Memory Trade-Offs
13.0 SPECIAL DEFINING WORDS
13.1 Use of
13.1.1 VECTOR
13.1.2 AKRAY
13.2 High-level Defining Words

38
10
I
N2
I
Uy
45
ug
16
48
50
52
52
51
55

58
63
03
64
65
65
66
68
70
70
73
73
76
78
78
80
81
84
84
85

microlFORTH TECHNICAL MANUAL

14,0 VOCABULARIES
15,0 THE CROSS COMPILER

15.1 Explanation of Terms
15.1.1 Cross Compiling
15.1.2 The Target System
15.1.3 The Host Systen
15.1.4 The Nuclcus
1%.1.% Defining vs Compiling

15.2 Organizing an Application to be Cross Compiled

16.0 THE CROSS COMPILER ENVIRONMENT

17

16.1 Colon Definitions
16.2 Defining V¥ords
16.2.1 VARIABLE and CVARLABLE
16,2.2 TABLE
16.2.3 CONSTANT
16.2.4 USER
16.2.5 Code Definitions

16,2.6 EQU and LABEL

.0 THE CROSS COMP1L.ING PROCESS

17.1 Procedure

17.2 The Cross Compiler Map

17.3 Core 1lmage Output

17.4 Program Dumps

17.5 Relocating and Expanding the Target Dictionary

18,0 EXTENDING THE CROSS COMPILER

18.1 Defining Words
18.2 Compiling Words

19.0 A TYPICAL DEVELOPMENT CYCLE

19.1 Research and Design

19.2 Coding and Testing

19.3 Cross Compiling

19.4 Installation and Checkout

90
95

95

96

97

97

98

99
102
104
105
105
107
108
108
109
111
113
113
114
116
117
118
119
119
122
124
124
124
126
127

Appendix A. microFORTI IMPLEMENTATION

1.1
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9
1.10

ON THE RCA COSMAC

DATA FORMAT

REGISTER ALLOCATION

ASSEMBLER MNEMONICS

1.3.1 Modifiers of Mneronics
TRANSFERS

CODL BEGINNING WORDS

MACROS -~ EXTENDING THE ASSEMBLER
USE OF THE ALLOCATED REGISTERS
INTERRUPT HANDLING

TIMING CHART

USER AREA MAP

- >

e e =
o

[Sa}

xR oo

PREFACE

Because of the importance of the Technical Manual to programmers, we are
revising it as quickly as possible and issuing the revised scctions as they are
completed. When the revision is complete (in 1979), each microFORTI customer
will receive a copy; updates and/or errata shcets will be issued thereafter as
needed.

T'he second edition of the Primer and the Appendices in this manual (i.e., the
CPU-specific prose and both glossaries) reflect the most recent microFOR'T'H
systems. ‘The next item scheduled is an expansion of the CPU-specific glossary
to include the cross-compiler; you may request one to be sent at the time of
publication by writing to the Editor at FORTH, Inc.

In order to make reading our documentation as easy as possible, we at FORTH,
Inc, use the following conventions in manuals:

1. All FORTH words that appear in prose passages as examples of
commands are enclosed by at least one cxtra space on cach
side. Words defined as occasional examples are also set off.

2, In all examples that show stack usage, the top item of the
stack appears to the right (as it does on your terminal screen
when you are entering).

Additional conventions used in FORTH manuals are those that FORTH
programmers use to make source screens readable. The most basic are:

L, Although only one space is absolutely necessary between each
word of a definition, spacing three times after a new word that
is being defined sets off the major components,

2, Double spacing between phrases (logical clusters) of a
definition also helps make source text legible.

3. When a definition takes up more than one line, the following
lines begin with an indentation of three or more spaces to save
the left margin for words being defined.

For microFORTH users we publish three levels of documentation. The
microFORTH Primer covers the broadest and most basiec aspects since it is
intended for the newcomer to programming to work through before commencing
study of the microFORTH Technical Manual. The Primer also serves as a
prospectus for experienced programimers to rcad quickly in order to spot
philosophical differences between FORTH and other high-level languages and/or
operating systems.

‘The mieroFORTH Technical Manual forms the second level of documentation. In
the four chip-specific versions (8080, 6800, 1802, and Z80), implementation that
depends upon hardware is treated in more depth.

Besides the differences in chips, variations exist within each chip category for
particular development systems on which mieroFORTH has been produced. These
differences are documented in the listings and CPU-specific instructions that are
issued with each mieroFORTH system. When users report especially useful
solutions to problems that arise during initial use of mieroFORTII systems, we
share the information in these packets, The documentation of Options likewise
accompanies delivery of each particular optional program.

Since we want you to make the most of your microFORTH system, we have
developed a Hotline scrvice, programiming classes, and the FORTH, Inc.
Newsletter.

During regular business hours a programmer is available to help you with
suggestions about troubleshooting. Since all of our programimers work on-site
when nceessary, at times therc will be a slight delay before someone returns
your call. Try, therefore, to place your call as soon as you are sure you have a
problem.

Classes are held at FORTH, Inc. whencver the number of potential students
warrants one. Each microFORTH class features an overview and then the focus
turns to the specific needs of those who attend. If you would like to
participate in such a eclass, use the Hotline to add your name to the request
list for the next scheduling.

A new aid, the FORTH, Inc. Newsletter (And So FORTH ...), is being published
quarterly, Lach customer receives two copics; each issue features articles on
programming. Since the content is intended to reflect user concerns, your

questions and suggested will be appreciated.

While you are reading any FORTIH, Inc. manual, we hope you will make notes
about questions raised but not answered, passages that are not clear, and,
especially, any mistakes you may find, We include a "Reader Comment Form"
with both the Primer and the Technical Manual to remind you that we need your
feedback in order that we may serve all our users well,

microFORTH Technical Manual Page 2

1.0 INTRODUCYTION

FORTH is a programmiing technique originally designed for real-time interactive
minicomputer applications. 1In such an enviromment it offers several advantages: it

is interactive, it is compact (uses little memory), and it is very fast.

FORTH has been implemented on many minicomputers and has been used in hundreds of
minicomputer applications. This manual documents FORTH as it has been modified for
use on 8-bit microprocessors for developing microprocessor applications which might
be cross-compiled for production. Such a development system is presumed to have a

programmer's terminal and a mass storage device such as a floppy disk.

FORTH i1s a computer language. It is structurally quite different from other
languages, however. FORTH is an interactive system, in that it has no separate
compiler or assembler--the routincs that gencrate and execute machine instruections

are integral parts of a unified system which also includes a small, fast interpreter

and an executive whosc characteristics may be modified for a specific application.

1.1 Elements of FORTH

FORTH has 5 main elements. Take away any one and you have something that is not
useful. There is a synergistic effect among them that produces a remarkably
powerful combination. Many of the characteristics and capabilities of FORTH were a

surprise to us and some remain sol

icroFORTH Technical Manual Page 3

1.1.1 Dictionary

The key element, if one must choose, is the dictionary. A FORTH program
is 90% dietionary. This, as implied by its name, is a collection of words
{or commands), together with their definitions. We are trying to explain
a problem to thec computer and do this by explaining what each of a numbcr

of words means. Thus it is a Man-to-Computer dictionary.

A collection of words is commonly called a vocabulary. The dictionary
defines a vocabulary for the computer, perhaps several distinet
vocabularies. Indeed, speaking of a FORTH program is sloppy, for FORTH is

the program,

An application coded in FORTH is better called a vocabulary. You use an

editing vocabulary to edit texlt, an obscrving vocabulary to observe an

cxperiment, ete. The vocabulary is just that: it is not a program since
it can't stand alone. It depends upon FORTH to do all the work and merely

describes what must be done.

Technically, the FORTH dictionary may be described as a linked list of
entries of various kinds. The nature of the linking and the actual content
of tLhe entries is described in the chapter "The FORTH Dictionary

Structurc."

Each defined word has an entry in the dictionary. FORTH provides the
mechanism for searching the dictionary, executing words, discarding words

and defining ncw words.

Another important and yisible element of FORTH is its use of "push-doun
stacks" for parameters. Most FORTH words represent opcrations; Lhese find
their parameters on thec stack; the addresses of variables are placed on
Lhe stack; results are placed on stack. The use of FORTH's stack will be

very familiar to anyone who has used the HP pocket caleculators.

microFORTH Technical Manual Page Ul

In particular, numbers are placed on the stack. Rlaborate calling

sequences and temporary storage areas are eliminated by its use.

FORTH actually uses two stacks: the parameter stack described above is
the most familiar to the casual user; the other is called the return
stack. Its primary use is storing return addrcsses for the interpreter,

although it may be used by the programmer for temporary storage.

1.1.3 Code

Some words are defined by code. This means that they contain a scquence
of processor instructions to be executed. Such a word is similar to a

subroutine.

The use of the FORTH assembler to construct code def'initions is covered in
Chapter 12.0 (THE ASSEMBLER). It allows the programmer direct access to
the processor architecture for coding device drivers, time-critical

functions, etc.

1.1.4 High level definitions

Most FORTH words are defined in terms of other previously defined words.
Thus they are a sort of abbreviation. Such definitions, however, are much
more powerful than the notion of abbreviation conveys. 1In fact, perhaps
90% of the words in a vocabulary are definitions. These are
processor-independent. Such definitions begin with : and end with ;

The : is followed by the name of the new word being defined; this is
followed by the words that make up the content of the definition, and

finally the ; terminates the definition.

1.1.5 Blocks

The final element of FORTH is its blocks--chunks of secondary memory 128

microFORTH Technical Manual Page 5

bytes long. & block may contain ASCII text (such as FORTH source} or it
may contain binary data. 1In either case, this secondary memory has been
logically arranged in fixed-length chunks, each of which is assipgned a
number by which you refer to it. You may load programs from blocks or
place data in blocks as if the blocks were memory. FORTH provides the

access to them as "virtual memory".

FORTH blocks reside on scme form of mass storage: this is most often disk
but may be link tape, magnetic tapes, or any similar medium. The
particul ar medium used in a FORTH system is transparent to the user; Lhat

is, blocks always appear to be in memory, regardless of where the system

fetched them!

Source text is organized in "screens", each of which consists of eight
12B-byte blocks {sectors), The size is chosen for convenience in display
(as on a CRT terminal secreen). The use of FORTH's text editor for

managing text screens i1s covered in Chapter 7.0 (TEXT EDITOR}.

1.2 Keyboard Input

FORTH is a terminal-oriented language. It demands the fluency of expression that

only a keyboard can provide. The input FORTH wants is simple:

words separated by spaces

In order to permit correcting errors and changing your mind, it recognizes:

RUB OUT to erase a letter (backspacing on CRT terminals).

When you are satisfied with your input, type:

RBETURN to mark the end of a message.

FORTH will respond with a space. Then it will proceed to read and act on each word

in the message. When it is done, it responds 0K and spaces to a new line. This is

as simple a way Lo communicate as we ecan devise.

nicrofFORTH Technical Manual Page 6

In the chapters to come we will discuss the basic elements of FORTH in more detail
and describe the process of using or modifying the FORTH vocabulary for your

application.

microFORTH Technical Manual Page T

An increasing number of computers and desk and pockel calculators nowadays basc
their logic on a parameter stack. FORTH has a parameter stack thal increases toward
low memery. Therc is a peinter to the word holding the number currently "on Lop of
the stack"; this pointer is kept in a regisler whcnever possible, although it may be
in RAM mewmory. The stack itself is always in HAM. To add a word to the stack, the

pointer is decremented.

The stack is 16 bits wide and Lhus may contain numbers in the range =-327683 < n £
32767 or O

16-bit addresses, you may reference up Lo 65536 bytes of memory directly.

< n £ 65%35. Numbers may be values or addresses; as addresses are Lhen

If you type a number on your terminal, tLhe number will be converted to a 16-bit
binary intecpger and placed on the stack. ‘Typing . (periocd or decimal point) will
cause the binary number on top of the stack to be converted Lo numeric characters
and printed on tne terminal. Most FORYTH words expceb one or more parameters on Lhc
stack (including words in the assembler), so you muslt make surc that they are Lhere,

and that they are in Lhe proper order.

Figure 1 shows Lhe result of typing a sequence of words. Recall that a word is
"separated by spaces"., There are no special characters in FORTH, so that 7 and
0#%%& and Uth are all perfectly good words., Several of Lhe wosl commonly used FORTH

words do deserve comment here:

! (pronounced "store") is the rcplacement operator. Tt expects 2

microFORTH Technical Manual

IFORTH

Stack

You type:

Action

17

Q@

Number 4 converted to binary
and pushed on the stack.

5 converted and pushed on
the stack, over the 4,

4 and 5 replaced by 9.

17 on the stack {over the 9),
Location of X (which has been
defined as a VARIABLE)

pushed on the stack.

17 stored in X; both 17

and location of X removed
from stack.

(Remember 9 is still on the

stack from example 1).
Location X pushed on stack.
Address replaced by contents (17).
9 and 17 replaced with 153,

153 typed on terminal.

Stack empty.

Figure 1

microFORTH Technical Manual Page 9

parameters on the stack: an address on Lop and a number heneath. It

stores the 16-bit number beginning at the address.

Thus if you wish to place the value 17 in the location whose address

is given by X, you might say
17 X!

e (pronounced "at") is an operator that fetches a value. It expects an
address on the stack; it replaces it with the 16 bit contents of that
address. @ is an exltremely important operator. Ip distinguishes
between loading and storing a value into a variable, a function

FORTRAN-1ike languages accomplish by context.

is an operator thal types the number on thc stack (and discards it).

These operators have been assigned single-character names because they are uscd so

often. Although their mmemonic value is weak, they are worth learning.

Similarly, + adds the two numbers on top of the stack, replacing them by the sum,
while - subtracts, ete. Refer to the glossary in Appendix A for a more completc

list of the operators available,

Several words have been defined in basic FORTH for manipulating the stack. The
operation of these words is summarized in Table iI. A fairly standard set of more
complicated stack operators is available, in some developed applications, for such

things as fetching numbers several levels down in the stack, ete.

The order of paramcters on the stack is governed by several wvell-defined

conventions:
1. Numbers are always pushed onto thc top of the stack or popped off

the top. Thus, if you type 1 2 3, the top is the right-most (or most

recent) number. 1f you prinl these, the resull might look like

.32 1 0K

microlFORTH

FORTH

Mord

SVIAP

DUP

DROP

OVER

ROT

Technical Manual Page 10

TABLE 1.

STACK MANTPULATI

=
13
[,
=
=

Stack

Explanation Before

TOP
Reverses order of 1 2
top two entries
Reproduces 1
top entry
Discards 1 2
top entry
Pushes entry 2 on top 1 2
of entry 1
Moves entry 3 to top 1 2 3
of stack

* Remember that all stack entries are 16 bits (2 bytes).

Stack
After

TOP

microlFORTH Technical HManual Page 11

where the underlined characters indicate generated output.

2. A "store" operation {!) operates from left to right {or entry 2

into entry 1), e.g.,

3 SEC |

stores 3 in SEC,.

3. Multiple precision numbers are always placed on the stack with the

high-order part on the top and the low-order parts beneath.

Y, Multiple-parameter arithmetic opecrators use an order such that if
the operator were moved from a suffix position to an infix position,

the operands would be in their customary peosition. Thus:

AB -~ is equivalent to A-B
ABC ¥ 13 equivalent to (A ¥ B) /C

5. An operation will destroy all its inpui parameters and lcave only
its result (if any) on the staek. Tt will, of course, destroy no

more than its own parameters. Thus:

172 3 + will leave 15 on the stack

All routines developed for an application should adhere to Lhese conventions,

The stack is located in high (RAM) memory and extends toward low memory. Unused
memory ia defined as the area between the high end of the dictionary and the top of
the stack. The size of the stack is limited only by this amount, sometimes several
hundred words. In practice, rarely uwore than thirty or so stack positions are used,
even in highly complex applications. The remainder of this space is used ag a

scrateh buffer area for such things as output formatting.

FORTH checks for stack underflow and overflow after executing each word that is
typed at the terminal. Becausc FORTH does not begin executing these words until

after the carriape rcturn is typed, the word that caused the error is typed oul on

microlORTH Technical Manual Page 12

the terminal, followed by an appropriate error message. If underflow occurs, the

error message is

STACK EMPTY!

The overflow message says

DICTIONARY FULL!

Since overflow can occur only when memory is full, it normally is nol of concern.
Should this occur, however, the only recourse is Lo discard some portion of your

dictionary. See Lhe chapter entitled "The FORTH Dictionary Structure'.

The stack is by far the best place to use for temporary storage, since stack
accesses are fast and specific memory allocation is nolt required. In particular,
the stack is an excellent place for saving the contents of a variablc which will

have to be changed temporarily.

2.2 Return Stack

v

FORTH has a second stack called the "return stack". It is primarily used by the
system for keeping return addrcsses for the inner interpreter. It is available to
the programmer on a limited basis, however, and can be a handy place to save numbers

temporarily during complicated operations.

The commands which work with the return stack are

<R Pops a number off the parameter stack and pushes it on the

return stack;

R> Pops a number off the return stack and pushes it on the

parameter stack;

I Pushes the number which is on top of the return stack onto the

parameter stack (without changing the return stack).

microFORTH Technical Manual Page 13

The return stack is also 16 bits wide.

The main constraint on the use of the return stack is Lhat al the end of a
definition the next return address must be on top. Although this is really the

system's business, it does impose one important rule:

ANYTHING YOU PUSH ON THE RETURN STACK MUST DBE REMOVED IN THE SAME
DEFINLITION.

A sccond important use of the return stack is keeplng DO-LOOP indices. This is
discussed in further detail in Chapter 5.0 (THE COMPLLER). The reason far

discussing it here is that this usc imposcs a second rule:

ANYTHING YOU PUSH ON THE RETURN STACK MUST BE REMOVED AT THE SAME LEVEL
WITH RESPECT TO ANY DO-LOOP.

This rule is rather difficult to state, alas; perhaps it may best be illustrated

thus:

f a loop, it must be

something on the return staek oukside

If you put son
cmoved outside the loop.

1

Some examples will be given in Chapter 5.0 (COMPILER).

micro FORTH Technical Manual Page 11U

3.0 NUMBERS AND VARIABLES

FORTH arithmetic is performed on integers and fixed-point fractions, rather than
floating point numbers. The use of integers takes advantage of the speed of integer
arithmetic operations in most microprocessors. FORTH's arithmetic operators are
designed to make integer operations as convenient as possible, without sacrificing
precision and speed. These will be discussed further under "Arithmetic'; the
purpose of this chapter is to discuss numbers and number formats as well as named

variables and arrays.

3.1 Numbers

ALl numbers that are typed or used in text blocks are automatically converted to
binary and placed on the stack. The rules and conventions governing the use of

numbers are as follows:

1. The base used in all number conversions is the current value of
the variable BASE. You may set BASE to any value you wish; the
commands DECIMAL, OCTAL, and HEX, however, are provided to set the

most commonly used bases. BASE controls both input and output; thus

typing
OCTAL 1000 DECIMAL

will print 512. BASE is the location of an 8-bit variable and care

should be taken to refer to it only by C& and C! (character fetch and

character store).

micro FORTH Technical Manual Page 15

2. During the bootstrap loading, the default base is HEX; after basic
FORTH is loaded, it is DECIMAL. Conventionally, you should assumne
that BASE is DECIMAL in all application blocks; if you wish to use
OCTAlL, or HEX in a block, always return to DECIMAL at the end.

3. A valid number is one which may be converted successfully; that
is, it contains only digits less than BASE plus a leading minus sign
(-) to identify negative numbers. Note that this does not include +
(to indicate positive). No blanks arc permitted; conversion stops

when a blank is reached.

b, p " pefore the leftmost digit causes the number to be negative
(two's complement). Otherwise the number will be positive. For
examplc,

._1475

is a negative number.
5. A1l numbers are converted to 16-bit integers. Depending on
whether you are using unsigned or signed arithmetic, a 16-bit integer

gives a range of

0 £ n < 65535
or -32768 < n < 32767

Numbers which exceed these limits will give an incorrect result.

6. Applications way need to handle numbers of more than two bytes in
lengih, such as 2/-bit integers, floating point numbers, etc.
Roulines to handle such number formats are available but are too

application~dependent to be offered in the basic systen.

micro FORTH Technical Manual Page 16

Es and CONSTANTs

The basic FORTH system provides two ways to name a location containing a value:

VARTABLE and CONSTANT.

0 VARIABLE X

defines X as a named location 16 bits wide whose initial value is 0, while

1000 CONSTANT Y

names a location Y whose initial 16-~bit value is 1000. The difference between these
is that when you execute X (e.g., by typing it), you gect its address on the stack,
whereas typing Y pushes Y's value on the stack. Each CONSTANT or VARIABLE occupies

10 bytes: two for the value, plus eight for the name and other system information.

Normally a CONSTANT is thought of as a named yalue which will change seldom or

never. The advantages of using CONSTANT are twofold: (a) a standard value which is
used in several places should be defined with its value given only in one place, so

that it may be changed simply in the future without the risk of a "missing one

place"; (b) use of an actual number as a literal in a definition costs three or four

bytes, whereas reference to a CONSTANT costs only two.

A VARIABLE, on the other hand, is really a named location. You may fetch its value

by using the command @ (at) or store into it by using ! (store):

100 VARIABLE A O VARIABLE B
AO B!

moves the value of A to B. The command ? (defined as € .) is provided for fetching

and printing the value of an VARIABLE:

X7

Now, this doesn't mean you can't change the value of a CONSTANT. The cowmmand !

(tick) fetches the address of the word which follows in the input stream; thus

microe FORYTH Technical Manual Page 17

100 * Y I

will store 100 into the address of Y. OFf course, this i3 just a little harder;
CONSTANTS are optimived for uses in which a value will be used often but changed

seldom.

3.3 Arrays

Most applications contain arrays of some kind. FORTH not only allows you to define

kinds of variables other than CONSTANT and VARIABLE, it also allows you to define
kinds of arrays that arc optimized for a particular usage, Later on we will
describe how you may define kinds of variables and arrays yourself (in Chapter 13.0,
SPECIAL DEFINING WORDS). The simple usc of VARIABLE itself, however, makes a very

straightforward kind of array possible.

As your FORTH vocabulary 1ls compiled, a system variable called H (which may be
feteched by HERE) always points to the next available bykte in your dictionary.
Simply adding a number to H will cause that number of bytes to be skipped over in

the dictionary, leaving spacc for the array. Therefore if you say

0 VARIABLE DATA 99 H 4!

you will have decfined DATA to produce the address of the first byte of 101 available

bytecs. The first two bytes will be initialized to 0; the remaining 99 contain
undefincd values. Here the command +! is used to increment H by 99. Thereafter,
20 DATA + @

will feteh the 16-bit value beginning at the 21st byte in DATA, ete. If you wish Lo
access the byltes individually, you may use the commands C8 and C!. These fetch and

store 8=bit numbers, although those numbers will be 16 bits wide while on the stack.

The words MOVE and ERASE are sometimes convenient to use with arrays of data. The

command

source destination count MOVE

micro FORTH Technical Manual Page 18

moves 'count' bytes of data from the locations starting at the source address to the

locations starting at the destination address. The command
address count FERASE
zeros 'count' bytes of memory starting at the specified address.
In Chapter 5.0 (COMPILER) you will see how to run through arrays in a loop. Chapter
6.0 (BLOCK 1/0) will suggest techniques for using FORTH blocks as "virtual memory"

for data, a technique which offers great savings in memory if you have access to

mass storage in your application.

3.4 USER Variables

There exists a special kind of variable known as a user variable. While normal

variables will provide the address of data that is contained within their
definitions, user variables point to a separate region of memory known as the user

area. User variables are defined by the word USER in terms of their offset from the

beginning of the user area. For example,

20 USER SCR

defines SCR to be the location of the 21st byte in the user area. The base of the

user area is controlled by a system variable called U (sometimes in a register).

User variables wecre initially designed for multi-terminal systems in which each user
of the system requires a private copy of the system variables (hence, the name
USER). Your development system has only one fixed user area and one terminal. User

variables are retained primarily to allow for mutli-programming as an option.

Caution: the user area on your system is of fixed allocaltion and contains important

system variables (e.g., BASE, H). For this reason you may not defing your own user
variables! However, as the user area 1s in RAM in cross-compiled applications, it
is sometimes a uscful place to put a few application variables. Techniques for

doing this are discussed in Section 16.2.4.

microlFORTI Technical Manual Page 19

.0 ARITHMETLC

FORTH does not attempl to providec a completec set of arithmetic and logical
operators. Rather, it of fers the operators most commonly useful and encourages the
user to add any morc he feels will make his particular problem more tractable.
Those operators normally available include 16-bit integer addition and subtraction;

mixed B8/16 bit integer multiplication and division; and some logical operators,

Recmember that all operands for FORTH functions arc on the stack, and that all
results are left there. Numbers on the stack are all 16 bits wide (2 bytes). In
this chapter, when we speak of 7~ and 8-bit numbers, we are rcferring to the

significant bits in the number, not to ils size on the stack,

Two functions bear special discussion because they are very unusual. The operator
#®/ multiplies a 16-bit number by an B-bit number and divides by a 7-bit number. The
intermediate product is 23 bits, so that Lhe result is fully accurabe to 16 bits.
Similarly, ®*/MOD multiplies a 10~bit number by an 8-bit ratio with a 23-bit
intermediate product, giving a 16-bit quotient and 7-bit remainder. This makes
possible aceurate integer arithmetic without loss of precision from truncation

errors. A detailed listing of the moslt common operators appears as Jable 11.

These operations are exlremely useful for scaling and unit conversion. For cxaumple,
suppose you have an application in whieh the internal unit of length is mila
(.001"), but certain lengths nced to be cntered in millimeters. If you define MM
thus:

MM 250 53 #/

then to input ?0mm, you could just type

microFORTH Technical Manual Page 20

ARVTHMETIC OPERAYORS

QPELRATOR DESCRIPTION COMPUTES

+ hddition STig + 5016 = 8016
sSubtraction Sty - 3016 = 3016

* fwmltiplication ST * S0y = 5044

/ Division S1y6 7/ 304 = 3016

%/ tultiply - Divide (8216 % S1g) oy / S0y = 5044
(23~bit intermediate —)
product)} Sum can't exceed 23 bits.

E/MOD Multiply - Divide '(82[6 *_§}§)23 / 807 = 3016’ S18rem
(23-bit intermediate ~ .
product) Can't exceed 23 bits.

) % N ; o -

U Multiply Sty * SOy = S04

us Divide 5115 / soq = SO8 N 818 rem

40D Modulus 3116 MOD 307 = 808

MINUS Unary minus - (S01p)

1A X Max imum larger of (81, $0), signed

#IN Hinimum lesser of (81, S0), signecd

< Less than 1if S1 < 30, signed;
(truth value) 0 otherwise

> Greater than 1 if 81 > S0, sicgned;
(truth value) 0 otherwise

= Equality 1 if S1 = S0, signed;
(truth value) 0 otherwuise

0< Less than <ero 1 if 50 < 03
(truth value) 0 otherwvise

0= Lgual to zero 1 if SO0 = 0

(truth value)

0 otherwise

‘The notation in the COMPUTES column above shows the stack position of operands. S0
is the top stack item, 31 is the item below, etc. The subscript gives each number's
preccgsion. Remember, all stack entries occupy at least 2 bytes., The high-order
byte of an d-bit number is O, bxcept as noted, all multiplication and division are
unsigned.

microFORTH Technical Manual Papge 21

20 MM

and you'd have the length in mils on the stack. #*/ is particularly useful for

computing percentages. Given

: % 100 #/

then

1275 15 %

gives you 15% of 1275. Similar definitions might be used to automatically calibrale

measured data.

The use of these combined operators makes it rarely necessary to resort to floating
point. This is nice since software floating point is slow and cumbersome wWhile
hardvare floating point is expensive and rarely available on microprocessors. There
is another cost, that of spacc versus accuracy, "Single precision" floating point
number s occupy at least 3 bytes and give only N-1/2 digit resolution, while in the
same 3 bytes you can carry nearly 7 digit resolution as an integer or fixed-point

fraction.

5till, there are times when scaling is a preblem: for examwple, when entering input

or manipulating data.

Input is most easily handled by determining a reasonable scale and then scaling
quantities internally with operators such as */MOD. Thercfore you can work in
tenths of seconds, millivelts, megahertz, or whatever unit is appropriatc to the

problem.

Data is best handled using "block floating point". This technigque allows you Lo
specify one scale factor whieh will apply to a block of data. Thus the data can be
kept in as 16-bit integers, with a single number carrying the scale. All arithmetic
performed on this data can then apply the scale factor as relevant. This technique

handles the vast majority of data scaling problems.

microFORTH Technical Manual Page 22

FORTH!'s use of procedural logic (rather than descriptive or algebraic logic) may
take a bilt of getting used to. But it is extremely effective, even for very
elaborate calculations. The important thing is to factor your definitions nicely,
identifying like components and then defining these as operators. Choosing good

names for these ean make the resulting code not only compact but readable.

microFORTH Technical Manual Page 23

%.0 COMPILER

FORTH contains a simple and fast 1-pass compiler. It does not rearrange source code
as does a FORTRAN or PiM compiler; rather, it generates sirings of addresses of
previously def'ined routines. It makes the task of writing efficient high-level

routinas extremely straighiforward and allows complete control over logical flow.

The basie form of a definition is

vord other words ;

Many examples arc available--just look through the basic program listing. The
syntax 1s as simple as possible, The first word following the colon is the word
being defined. There is no punctuation except for the : and ; (remember, words are

separated by spaces).

5.1 Literals

Any 8- or 16-bit number may be used directly in a definition. Sueh literals are
compiled in-line as 3 or 4 bytes: the (irst 2 contain bLhe address of a short
routine to push thc conktents of the remaining byte(s) onto the staek. The longer,
l-byte 1ilerals arc generated whenever the literal value is ncgative or larger than

255,

Literals are compiled using the current BASE, which must be sct before starting a
colon definition, If you inelude DECTMAL, HEX or OCTAL in a definition, BASE will

not be set until the word is executed. Consider, for example,

microFORTH Technical Manual Page 24

DECTMAL ¢ A HEX 20 ;
HEX : B DECIMAL 20 ;
Then A will put decimal 20 on the stack, and change BASE to 16; B will put decimal

32 on the stack and change BASE to 10.

5.2 Logical [Flow

The cardinal rule that wust be followed is this:

YOU MAY NOT USE ANY WORD THAT HAS NOT BEEN PREVIOUSLY DEFINED.

Remember, this is a 1-pass compiler. The same rule applies to the assembler
(covered later in this text). This means that forward references (except in case of
the IF...ELSE...THEN construction, which we'll get to shortly) are not allowed, a
rule which has the effect of requiring you to modify your programming style to favor

"structured programming'.

Since FORTH encourages extreme modularity, your control of logical flow will mainly
be through appropriate management of previously defined words in a definition. In

addition, FORTH supplies commands for forming loops and two-branch conditionals.

5.3 DO-1.0QPs

Most loops are constructed by using the beginning word DO (which expects 2 loop
parameters on the stack) and one of two ending words, LOOP (which incrememts the
loop counter by 1)} or +LOOP (which increments it by the amount on the top of the
stack, an amount which is then removed from the stack). The loop parameters are the
initial value of the index, taken from the top of the stack, and the upper limit,
taken from the second word of the stack. For example, to print out the numbers from

0 to 9, you might define PRINT as

PRINT 10 0 DO 1 . LOOP ;

These numbers are treated as unsigned (that is, 0 to 65535). The loop terminates

microFORTH Technical Manual Page 25

whenever the limit is reached or excecded. The group of words between DO and LOOP

will be execuled once every pass through the locop. Because the test for termination
is at the end of the loap {(after incrementation), the loop will always execute at

least once.

The two loop parameters are removed from the stack by DO and pushed on the return
stack, which places certain restrictions on their accessibility. The loop counter
may he accecssed using the word I, which places the value of the counter on the
stack. Remember that 1 is a verb! You may not directly modify it. In fact, the
counter may not be changed at all except by the LOOPs. TIn nested loops, 1 provides
the counter for the innermost loop. J similarly provides the counter for the next

outer loop, if any.

Because the loop parameters are kept on the return stack, and because the return
stack changes when you begin and end deflnitions, DO must be in the sane definition
as its terminating LOOP or +LOOP, as must I or J. Furthermore, you cannot use <R

inside a DO...LOOP and still have access to the loop ccunter using either T or J.

Note: A DO..

LOOP structure must only be used inside a definition.

Figure 2 considers a very simple loop in detail. There are also some cxamplcs
below; try to understand how each works, referring to the Glossary for unfamiliar
words. You may find it helpful to keep track of the stack on a piece of scratch

paper.

5.3.1 Examples of DO-LOOPs
1. Suppose you want to writec a loop Lo handle a variable nunber of
items in some way. The easiest way is to specify the number of items
as a parameter tco the command containing the loop. You provide for

Lhis simply by omitlting the needed parameter from the definition:

PRINT 0 DD . LOOP ;

microFORTH Technical Manual Page 26

STEP COMMAND ACTION
1 10 10 pushed on stack (upper limit)
2 0 0 pushed on stack (starting index)
3 DO 10 and 0 put on return stack

(stack clear).

4 I Pushes current value of loop
index on stack (0, then 1, 2,
etc. to 9)

Types out top of stack (0, 1,
2, etc.)

(€]
Repeafed

6 LOOP Increments index, then compares
with upper limit; if index

¢ limit, returns to step 4.
When index = limit, discards
both and continues to step 7.

7 CR Types carriage return; executed
after loop has repeated 10
times for values 0 - 9.

EXAMPLE OF A LOOP IN ACTION

10 0 DO 1 . LOOP CR

Figune 2

uicroFORTH Technical Manual Page 27

Here the limit was omitted. This means you must provide not only the
numbers Lo be printed by . inside the loop but also the number of
numbers., A reasonable use of the definition above might be for

number conversions:

OCTAL 10 100 1000 10000 DECIMAL. 4 PRILNT
(Prints 4096 512 64 8)

Laution: AL run time, no check is made for stack underflow or

overfiow within a definition. Thus, stack mismanagement in loops can

be repeated, and the accumulated errors may be fatal.

2. Sometimes you may want to specify both loop parameters at
execution time. Again, you simply lecave them out of the definition.
As the "natural" order for speeifying limits is "lower, upper", which
is the opposite from the order DO expeets, you might want to SHWAP Lhe
arguments; moreover, since a loop terminates when the limit is
reached after inerementation, you may often want Lo add 1 to the

upper limit.
In the example below 1+ adds 1 to the top of the stack. Assume T will
type out a specified line of text. The purpose of this definition is
to print a range of lines.

v LIST 1+ SWAP DO I T LOOP ;
Thus

0 15 LIST
will list lines 0 to 15.
3. This cxample shows how you may integrate a function over a
specified range of values. ilere we assume FYX to have been defined to

conmpute the value of a funetion of X where X is given as a parameter.

The following example computes the sum of values over a given range:

microlFORTH Technical Manual Page 28

SUM 1+ SWAP DO I FX + LOOP ;
To use SUM you would say,
0 100 200 SUM
The sum would be left on the stack. The limits are 100-200; the 0 is
put on the stack as a starting value for the integration. SUM might
be more convenient to use if you didn't have to think about the 0.
INTEGRATE will supply it for you:

INTEGRATE O ROT ROT SUlM ;

Typing

100 200 INTEGRATE

will return the same value on the stack that SUM did.

4. Here is an example which shows how you may nest loops to provide

two dimensions, in this case several rows of numbers:

DUMP SWAP DO CR I 16 + I DO
I 7 2 +«LOOP 16 +LOOP ;

This takes a range of memory addresses on the stack and prints out
the contents of that region of memory, as 16=-bit numbers, 8 numbers
per line. A multiple of 8 numbers will always be printed even when

the requested range is not a multiple of 8.

Always remember: DO and LOOP must be in the same definition. Likewise, I may only

be used in that definition (since entering another definition modifies the return

stack).

microFORTH Technical Manual Page 29

5.4 BEGIN...END Loops

It is possible to use +LOOP to provide a loop which would run indefinitely, until a
condition is met by giving a truth condition (0 or 1) as the increment to +LOOP. A
rather more straightforvard type of indefinite loop is provided by the commands

BEGIN...END.

BEGIN takes no parameters, compiles nothing, and serves merely to mark at compile
time the beginning of thc phrase to be performed repeatedly. END takes one
parameter; if it is zero (false) the phrase will be repeated; if il is non-zero
{true) the loop will terminatc and the next word after END will be exccuted. Here

is a simple example:

: MONITOR BEGIN READ OVER = END DROP

In this example READ is assumed to be a function which reads a value from a device.
This loop will wmonitor the device until it returns a value which is equal (o the
value which was put on the stack before MONTTOR was executed.

NOTE: . .END structure must only be used inside a single

A BEGIN.
definition.

FORTH has a2 standard 1= or 2-branch conditional statement. The syntax for a 2.-way

branch is

condition TIF true phrase ELSE falsc phrase THEN continuation...

Omitting the KLSK and the false phrase produces a 1-way branch:

condition I true phrase THEN continuation...

These structures also may only be used inside a definition. Use of the conditional

statement is illustrated in these examples:

microFORTH Technical Manual Page 30

EQUAL A B = IF 3 ELSE 9 THEN 1+ . ;

will print 4 if A and B are equal and 10 if A and B are not equal. A less naive use

is

O VARIABLE S 99 CONSTANT LIMIT
SLIM S @ LIMIT > IF 100 ELSE S € 1+ THEN S ! ;

Remember that the IF will jump to ELSE or THEN if the top of the stack contains zero

(false). Therefore, the 1¥ inherently contains a "not equal to 0" test.
Note that IF will destroy its parameter. JIf the valuec on the stack to be tested by
IFF is also needed inside the IF...THEN clause, it must be DUPed before the IF. Thus
in

DENOM € DUP IF NUMERATOR €@ SWAP / RATIO ! ELSE DROP THEN
the / divides NUMERATOR by DENOM and the DROP drops DENOM in case DENOM was 0. The
word -DUP, which DUPs the top of the stack only if it is non-zero, may be used to do
exactly the same thing without the need for an ELSE:

DENOM @ -~DUP IF NUMERATOR @ SWAP / RATIO ! THEN

Several words have been dcfined to perform other tests for IF:

0= Replaces a number by 1 if the number was 0, or by 0 if the

number was non-zero,

0< Replaces a number by 1 if the number was negative, by 0 if 0 or

positive.

= Replaces two numbers by 1 if equal, otherwise by 0. Note that -

is sufficient to test for not-equal.

< Replaces two numbers by 1 if the lower is less than the top

number, otherwise by O.

microFORTH Technical Manual Page 31

> Replaces two numbers by 1 if the lower is greater than the top

number, otherwise by 0.

NOT Reverses the truth of the top of the stack (replaces non-zero by

0, 0 by 1. Same function as 0=).

Figure 3 illustrates some successful and unsuccessful ways of nesting structures.

5.6 Special lL.oops

Occasionally a situation arises in which, for any number of reasons, one of the
standard loop structures simply does not yield a satisfactory solution to a problem.
For example, it is often desirable to terminate a DO loop before its full range has
been exhausted, or to terminate a BEGIN...END loop by testing a condition at the
middle or beginning of the loop. FORTH provides special help in these situations

with the words LEAVE and WHILE.

5.6.1 LEAVE

The main difficulty in the use of DO loops is the problem of prematurely
terminating the rangc of the loop {(as in search operations). Often this
can be achieved by using +LLOOP and passing it a very large increment.
This presumes some knowledge of the range, however, because if the
increment is too large the loop index will overflow and become quite
small, achieving the opposite of the desired result (i.e., an infinite
loop). Sometimes a BEGIN...END loop will suffice if a Boolean expression
can be devised that properly expresses the two conditions for termination
and if some substitute for a loop index can be left on the stack., 1In both
of these examples the imposition of additional items on the stack can

severely complicate stack management.

The word LEAVE provides an exeellent means of ending the range of a DO
loop. It does this by sectting the loop limit to the current value of the
loop index. Then, when the LOOP or +[.00P is reached, any positive or 0O

increment will cause the limit to be met or exceeded and the loop ends.

microlFORTH Technical Manual Page 32

RIGHT:

100 0 D6 I 10 + I D5 I . I0OP CR 10 +50OP

|

this I refers this I refers to this loop
to this loop

WRONG: ———

X @ 0 Dno I 100 » If’FEBOP THEN
this is not what you had in mind!
RIGHT:
[limit on stack] 100 MIN 0 DO I 50 < Iﬁi:::TEEEEi:::TEEEN LOOP

!

<50 case 150 case
RIGHT:
P
ilimit on stack] -pup IF 0 DO ... ©LOOP THEN

prevents executing loop if limit is O

NOTE: without the IF, the loop would have
been cxecuted once

EXAMPLES OI" NESTED STRUCLTURES

Figune 3

microFORTE Technical Manual Page 33

NOTK: LEAYE must only be used inside a DO loop.

The following example scans a region of memory and converts all ASCII
nulls to blanks until either a count is exhausted or an end of text (3) is

rcached. The count is on top of stack with the memory address beneath:

: SCAN OVER + SWAP DO T C8 -DUP IW
3 = IF LEAVE THEN MLSE 32 1L C! THEN LOOP

The phrase OVER + SWAP is commonly used to convert a start address and
count into a limit and initial value for DO loops. MNote that, since LEAVE
works by modifying the loop index, the loop will not actually terminate
unt il LOOFP or +LOOP is reached. That is, words between LEAVE and LOOP

will be executed normally,

5.60.2 WHILE
WHILE is a word that combines some of the functions of both THEN and END.

Syntactically, it is used as follows:

BEGIN ... condition IFF true phrase ELSE false phrase WHILE

or

BEGIN ,.. condition IF true phrase WHILE

The I compiles as a condilional branch, as usual. 1[If the phrase
immediately before WHILE is executed, Lhen the loop will he rcpeated.
Otherwise the loop is exibed. What this means in the first example is
Lhat when the II condition is true, Lhe true phrase is cxccuted and then
the loop is exited. As long as the condition is false, however, the false
phtase is executed and the loop is repeated. TIn the second example a
false condition at the IF immediately exils the loop, while if a true

condition exists, the true phrase is execubed and the loop i3 repeated.

microffORTH Technical Manual Page 34

lefinition.

NOTE: WHILE must only be used within a
WHILE can be used to write loops with a pretest rather than a posttest (as
in DO-LOOPs and conventional BEGIN-END loops). The pretest is performed
by IF, and the body of the loop is between 1F and WBILE. Note that the

loop may be performed zero times with a pretest, as opposed to a posttest.

For example, suppose you have a queue which accumulates a backlog of
actions to perform (the queue might be interrupt-driven). You have

defined the words:

ANY Places true on the stack if there is anything waiting in

the queue

PERFORM Performs the action at the head of the queue

ADVANCE Advances the queue pointer to the next item

Then the following loop will perform all actions in the quecue:

EMPTY BEGIN ANY IF PERFORM ADVANCE HWHILE ;

Note that if there are no actions pending, the loop exits immediately.

5.7 Special Literals

5.7.1 Use of ['1

You have seen in earlier chapters now ' can be used to provide the address
of the word following it. When ' is used within a definition, however, it
is compiled and will not be executed until such time as the word in which
it is used is itself executed. Thus the ' will get the address of the
next word of the input string at execute time, not at compile time. This
may be desirable; but if the intent is to gel the address of a word

compiled as a literal, a different word, ('], must be used,

microFORTH Technical Manual Page 3%

['] is a word which Lhe compiler executes at compile time. This word uses
' to find the address of the word which follows it and compiles Lhis

address as a 16-bit literal.

5.7.2 Use of IN-LINE
Occasionally you will find yourself compiling expressions that are
invariant at cxecution time. That is, they will evaluate to a constant.
This is an unfortunate waste of both time and wemory. One solution would
be to name these cxpressions as CONSTANTS. This is preferable whenever
the value is to be used more than once. Alternatively, the word LN-LINE
Wwill remove a nuaber from bhe stack at compile time and compile it into a
definition as a i1b-bit literal.This number must be computed and lefl on
the stack before starting the definition and must be on top of the stack
at the place where IN-LINE is used. All loops and conditionals also use
the stack at compile time. This weans that IN-LINE cannot appear inside a
loop or conditional phrasec and still have access to its intended

paramrcter.

NOTE: ['] and IN-LINE must be used only within a definition.

5.8 Extending the Compiler

The one thing which all of the compiling words (D0, LOOPY, +LOOP, BEGIN, END, IF,
ELSE, THEN, WHILE, ['], IN-LINE) have in common is that they all exccute at compile
time to perform sowme conmpiler-relabted activity, rather Lthan being compiled as an
address, as FORTH words normally are. The ability to define such words enables the
compiler to be arbitrarily cxtensible. This facilily is implemenited by means of the

word TMMEDIATE (you may see examples in Screen 9).

The word IMMEDIATE is placed immediately following the definition of a new word that
is added Lo the compiler Tt sets a special flag {(called "Precedencc") in the new
word that prevents that word from ever being compiled into a later definition.

Tnstead, when the compiler comes across this word in a definition, it is executed at

microl'ORTH Technical Manual Page 36

that time and wmust perform its functions explicitly. Take for example:

[SWAP] SWAP ; IMMEDIATE

When [SWAP] is encountered in a definition, it swaps the top two items on the
compile time stack. This can be useful for making a value destined for IN=LINE
available inside of a loop or conditional phrase (since DO, BEGIN, IF and ELSE leave

addresses on the stack at compile time).

Another important word that is used in the definition of compiling words is \ . Let

us use as an example the definition of DO, defined in screen 9 as:

DO\ DO HERE ; IMMEDIATE

The DO which appears after the \ refers to a word that was precompiled in the
initial boot load. This previous version of DO (referred to as the "code DO") is
the one that, when executed, will move two items from the parameter stack to the
return stack. This is the last time that the code DO is ever referred to explicitly
because the new definition (called the "compiling DO") will supersede the ecarlier.
The code DO has not been lost, however, because its code address has been compiled
into the definition of the compiling DO. Then, whenever the compiling DO is
executed, the word \ will compile the addrcss of the code DO into the next free

space in the Dictionary. Thus,

\ DO is equivalent to {'] DO 2 - ,

HERE then places on the stack the address of the byte following the newly compiled

reference to the code DO. Later, LOOP or +LOOP will use this address in determining

where the compiled loop should return to. Finally, IMMEDIATE is used to mark the

compiling DO as being a compiler extension.

It should now be clear why compiling words must not be used outside of definitions.
The reason 1s simply that compiling words can only compile. The intended function
of DO is not performed by the compiling DO, but by the code DO that is compiled. In

order to be executed, the code DO must then be compiled into a definition.

microFCRTH Technical Manual Page 3

5.9 Memory Usage and Timing

The lengih of a ! definition is very easy Lo determine. The colon and word gencrate
the dictionary entry, uwnich gives an overhead of 8 bytes. Thereafter, add 2 bytes
for every defined word in the definition, including the semi-colon, and 3 for every
I¥, ELSE, END, WHILE, LOOP and +LOOP. Add 2 bytes for each DO and none for any
BEGINs or THENs. Add 3 bytes for short literals and 4 for literals greater than 25b%
or less than 0. (IN-LINE and ['] literals are always long.) O and 1 are defined as
constants; they take only 2 bytes. Timing depends on the execution time of the
components of the definition (refer to the appendix for your processor). If you are
trying to decide whelher to define a phrase separately or include its functions in
other definitions, you can assume that you break even in memory space if you will
use the defined word 2 to 5 times; you will save length - 2 bytes for every

subsequent usage.

Length of phrase: 5 6 7-13 211

Uses to break even: 5 4 3 2

The cost in time will be 2 interpreter cycles per usage--nof very much for what can

be extremely great savings in memory. For fime-critical portions of the application

you may use the FORTH assembler and work at full processor speed.

Tn cross~compiled applicalions, the first 6 bytes of every definition are stripped
off, since they are needed only for systems with interactive terminals. You break

cven in space defining an eight byle phrase if it will be used twice.

microlFORTH Technical Manual Page 38

6.0 BLOCK 1/

Disk I/0 is handlcd by FORTH in standard blocks of 128 bytes. This fixed block size
applies both to FORTH source text and to data taken by FORTH programs. (A complete

screen, or unit of text for display and editing, consists of 8 contiguous blocks.)}
This apparent inflexibility may appear strange Lo programmers accustomed to
designing special ized data formats, but in fact causes the entire problem of 1/0 to
disappear behind one standard block handler. The block size chosen is a convenient,
modest size. FORTH applications exist with several data records in a block, or with
several blocks forming a data record. The FORTH word BLOCK is used to gain access
to data blocks. BLOCK takes a block number off the stack and replaces it with the
address of a buffer that contains the requested data, performing any reads or wurites

as necessary.

Most microFORTH systems are configured with eight disk block buffers, 132 bytes
long. Each buffer begins with a 2-byte block status word which contains the block
number of the data currently occupying the buffer (or 0 if empty). The high-order
bit of this status word may be set to indicate that the buffer contents have been
updated and must later bc saved. The next 128 bytes comprise the data for this
block. The FORTH word BI.OCK is used to gain access to data blocks. BLOCK takes a
block number off the stack and replaces it with the address of a buffer that
contains the requested data, performing any reads or writes as necessary. The
address returned by BLOCK points Lo the first byte of this area. The last 2 byltes
are always 0. These bytes are very important and care must be exercised to never
overwyrite them. During the loading of a screen, they serve to stop the scanning of
the current block and Lo pass control to the next block in the screen. The entire
buf fer area can be cleared to 0 by the word ERASE-CORE. Nolte that any buffers
marked updated will never reach the disk if ERASE-CORE is used. This can be useful

if you catech an error in a disk buffer before it is wrillen back on the disk.

mierolFORTH Technical Hanual Page 39

The only requirement for fitting dala records into this structure is that data
record numbers be a fixed function of block number; then a word can be defined that

will use BLOCK to fetch the block(s) containing records requested by block number,

Here is an example in which data records are smaller than blocks., Three CONSTANTs
have been defined: LR is Lhe data record length in bytes, B/B is the number of

active bytes per block, and START is the first block of the file.

ADDRESS LR B/B #/MOD START + BLOCK + ;

ADDRESS replaces a "record" number on the stack by the address of the first word in

the record, having fetched the record as necessary.

It should be noted that disk systems do not require any sort of directory in memory
or on disk, as block numbers are a dircet function of disk address (the exact
relationship is designed to suit the particular disk involved). The fact that a
block number is a fixed function of absolute sector address gives you the ability to
allocate disk space in a fashion appropriate to your intended use to minimize head
motion and thus improve performance. Applications inveolving management of
complicated data file structures sometimes have a disk directory; this is a feature
of the application, however, rather than a standard feature of FORTH. Disk blocks

which are not in use should be flagged, normally by putting 0 in the first 2 bytes.

You may define named fields in a data record by using a definition such as ADDRESS,
above. Supposc you have a variable R# for reumembering a record number., Then you

could define some fields thus:

¢ FIELD Ré# ¢ ADDRESS + ;
: OBJECT 2 FIELD ; 1 TLMRE 6 FIELD : DATE 8 FIvLy

After bthis you may set R# and acccsas these fields as though they were normal

VARIABLEs, using @ and ! . You may even define an array!

DAT A 10 FIELD + ;

so Lhat 1 DATA feltches the address of the second byte, cte.

microlORTH Technical Manual Page 40

The one thing you must be careful of in such a scheme is that when you store
something in a data block, you must ensurc that the block is marked as having been
updated so that it will be written out in duc course. The comonand which does this
is UPDATE. UPDATE flags the buffer most recenltly accessed as having been updated.
Therc are many ways of including UPDATE in store operations, of which the simplest

is to define a spccial version of ! for data:

1D t UPDATE ;

Then you use !D whenever you are storing into a data block.

6.1 Error Checking

BLOCK itself does not perform any error checking. The capability for error
checking, however, is included in the disk utility, based on the following defined

vords:

ERROR Returns the disk status as of the last operation, masked for

error bits.

[BLOCK] Used 1like BLOCK, but checks for disk read errors. [BLOCK] will
read up to 3 times, issuing error messages, if errors are
encountered, and tallying errors. 1t will also keep whatever it
has after the last rcad. The error message reports the sector

number.

You may wish to define a word similar to [BLOCK] which handles errors differently.

microlFORTH Technical Manual Page 41

.0 TEXT EDITOR
Although you may type in definitions at any time, they will be lost if you reload
the program. Moreover, the source is lost forever--you cannolt recall it to refresh
your menmnory! There are two utilities supplied with microlFORTH which allow you to
maintain the text for your definitions in permament form on the disk. The EDILTOR
allows you to edit your definitions on the disk and modify the Lext; Lthe PRINTING

utility prints listings and indexes to text on disk,

s the normal 128-byte size is too small for coherent amounks of program scurce, the
ENITOR uses screens (roughly the right amount of text for a CRT screen). A screen
consists of 8 contiguous blocks of text, which will be formatted as 10 lines of 6l
characters each for display and editing. Lines are numbered 0-15.

You may list a screen at any time by giving its number and LIST. For example,

13 LIST

lists sereen 13. Secreens that have names (defincd using CONSTANT as deseribed in

Scetion 9.1) may be requeslted by name:

TRACK LLST
LIST not only lists the screen, it also sets ils number in the variable SCR. The
EDITOR uses 3CR to "remember" which screen is being edited. Thus, you should L13T a

screen before editing it, although you may omit this step by typing

screenit SCR !

microFORTH Technical Manual Page N2

During editing, you may list your current screen by siwmply typing L.

7.1 Text Editing Utility

The EDITOR is not resident on the COSMAC system, but may be loaded by:

EDIT LOAD

On other systems, the editing Vocabulary is accessed by the word EDITOR. You will
retain access to the EDITOR until such time as you compile a new word, after which

you must retype EDITOR or EDIT LOAD to return to the EDITOR's vocabulary. 1In
particular, if you LOAD a screen, you will leave the EDITOR vocabulary and return to

working vocabulary. Vocabularies are discussed in Chapter 14.0.

The editing commands are

7T Type line 7 (place in line buffer). The line number is

saved on the stack.

T text! Place text in line buffer.

4 P text CR Place "text" in the line buffer and then replace line U
with the line buffer contents. Can be used to edit text
that contains the " character. Because the text is
terminated only by the carriage return, P must be the last
command on a line. Note that the line number for P, if

left over from T, need not be repeated.

7R Replace line 7 with contents of line buffer. If you are

replacing the line just typed (with T), you need not repeat

the line number, since T saves it. Normally used after "
or D.
13 1 Insert buffer after line 13 (discard last line). Note that

-1 T is a valid comwmand, but 15 I is not.

microFORTH Technical Manual Page U3

13 D Delete line 13 (place in line buffer). The last line will
be reproduced and other lines will move up as needed. D

should not be applied to line 15; blank it out instead.

Definitions edited into screens may span any number of lines (up to 16). Due to the
fact that a screen is comprised of 8 separate blocks, however, no single word may be
allowed to span between an odd and an even numbered line. For the purposes of this
rule, a "word" shall include both bracketed text strings (described under "Output!)
and parenthetical comments. Subsequent lines of multi-line definitions are

typically indented for readability.

No special action 1is required to edit a previously unused screen, An unused screen
is filled with undefined characters. You edit in new lines by replacing lines with

text. For example,

" THIS IS A NEW LINE " t R

puts THIS IS A NEW LINE in the line buffer and then into the second line of the

screen, This can also be achieved by:

1 P THIS IS A NEW LINE

Note that P and " are ordinary FORTH words, which must be followed by a single blank
before beginning the text, Any line entered by P or " will be padded with blanks at

the end. When you finish typing in lines of the text, you should fill any unused
lines with spaces. A blank line is defined by at least {wo spaceg within quotes:
o 12 R 13 R WR 1SR

fills lines 13-16 with spaces.

Notice that you may string together Rs in this case, because the blank line remains

in the line huffer.

To move a line, you may delete it (D places a line in the line buffer) and then use

R or I, For example:

microFORTH Technical Manual Page Ul

23 SCRt 8D 24 SCRt 1R

deletes line 8 of screen 23 and replaces line 1 of screen 2l with it.

Remember that the line numbers are current, ordinal numbers. 1 and D will prenumber

the remaining lines in that screen.

An additional word available in the EDITOR is COPY, which is used to copy all 8

blocks of one screen to another.

Usage: source destination COPY

Example: 5 105 COPY (Coplies screen 5 to screen 105.)

7.2 Program [isting Utility

The PRINTING Utility is used to list source text screens and indices of first lines

of a range of screens, It is loaded with the following command:

PRINTING LOAD

The commands described below are appropriate for use in a printing terminal.

7.2.1 Index listings

PRINTING will produce an index listing, which shows the first line of each

screen in a given range of screens,

Generation of an index is specified by the following command:

start end INDEX
where ‘'start' is the starting screen number and 'end' is the ending screen
number plus one, The index will be formatted 60 lines per pagc. Should
the range of screcens be less than 60 or not an even multiple of 60, the

last page will be partially filled,

microFORTH Tccehnical Manual Page 15

7.2.2 Program sacreen listings

To 1ist an entire range of screens, use the lollowing command;
atart cnd SHOW

SHOW lists screens three per page, starting each page with a screen number
evenly divisible by 3. This weans that you may replace an individual
page, rather than always having Lo list an entire application., Only
entire pages will be printed, in sufficlient quantity to cover the
requested scrcen range., Unused screens wlll not be listed. On a
partially used page, space will be left for unused gcreens, An unused
screen, by definition, contains nulls in its first two bytes. Pages with

no used screens will be skipped,

To list a single page, use the following command:
scr# TRIAD

where ‘'scr#' is the screen number of any screen on the d-sired page.

microFORTH Technical Manual Page U6

8.0 QUTPUT.

Most microprocessor applications necd only rclatively simple numeric output. This
chapter describes simple techniques for preducing attractive cutput. Some of these
are included in the standard system; others have been found useful in some

applications and are offered as suggestions.

8.1 Right-Adjusting Numbers

An important capabillity for numeric output is the ability to right-adjust a number
in a field of fixed width. There is a standard word available for this: .R prints

a 16--bit integer right-adjusted in a field of specified width., As an example,

30 % LR prints]

Using this word, all you have to do Lo print a table of numbers in columns is to set
up a loop for the number of columns desired across the page. The definition of
DUMP, which dumps a reglon of memory when given the starting address and length, is

a good example:

: HALF SPACE SPACE 8 0 DO DUP C@ 3 .R 1+ LOOP ;
: DUMP 0 DO CR DUP 5 .R HALF HALF 10 +LOOP SPACE pROP

You should note in this example the use of HALF to print cach linc in two sections
for readability. An cxample of this oulput is provided by Figure U, CR provides a

carriage return and line feed. DUMP is available in all systems.

microFORTH Technical Manual

C

ICC LUMP
C EC
10 AL
20 47
30 Ep
4C CE
50 Fa
&6C 1
70 4F
30 Ay
90 ¥4
A0 45
BO AF
cc 4T
DO SE
EC 4rC
FO 0

9C
4]
no
4
SE
AT
1 E
AL

C

LALA)
.

akF

C
4
9E
|

RN

El
EL
49

DT
Pt

oF
3B
4%
1 E
CA

[=a
Jd

L4

I
LR

2L
LA

LT
i1
E3
5k
2F
55

F3
NHE
)
3E
S5E
9D
4qF
22
35
ELC
3C
BE&

CF
LG

1€
DF
£3

al
[

F
FC
1L
52
E&
30

C
I1E
40

4
[
SE

DF

Pave N7

£F
k4

G

o
4G
EF
V4

~
52

FG
33
4t
45
9¢

¢

Figurued

OF
3¢
|
¢l

L
61

cC
78
Ae

[aan
[

4G
09
20
2c
F7
o
94
12
CI
5E

d

iy
1k
LE
SE

0]
bLE

52
3B
FF
1D
F7
bA

DF
41

AC
g:
he
L F
0
56
DF
90
¥
3C

49
40

b

4
D3

rn o,
20

oy

log

x
Tomoroouoce>~oo0omm0

Gt

T oW
™

LD
40
ALz
3F
ED
a9
6F
4C
1D
D¥
2B

R
49
&E
3A
3C

7y
L9
AF
ay
8D
0
| E
AT
LT
3
40
43
2L
[
20
2 9K

nicroFORTH Technical Manual Page U8

8.2 Custom Number Formatting

FORTH provides convenient custom number formatting at high level. The basic
procedure assuuwes that an unsigned 16-bit number to be converted is on the stack.
If a sign is to bc attached to the number, a signed copy of the number should be in
the gccond stack position. Successive digits are computed as remainders modulo
BASE, converted to ASCI1 characters and placed in an output string., The declining
quotient is kept on the stack. Special characters (such as decimal point) are
placed in the output string between the conversion of the appropriate digits. Note
that the least significant digit is gecnerated first, so the output string is

gencrated in the recversc order from the way it will appcar.

Here are the words for number formatting:

<# Initializes the number conversion process by resetting the

pointer to the output string.

i Converts one digit from an unsigned number on top of the stack
and puts it into an output character string, leaving the
remainder of the original number on the stack. Always produces
a digit whether or not there arc remaining significant digits in

the number.

#s Converts successive digits until the result is zero. Always

produces at least one digit (0 if the valuec is zero).

SIGN Tests the sign of the number beneath the top stack item. If
negative, inserts an ASCII minus sign into the character string.

Removes the signed number.

HOLD Ingerts, at the current position in the character string being
formatted, a character whose ASCII value is on the stack. HOLD

must be used between <# and #>.

#> Complectes number conversion by dropping the resident number fron

the stack and leaving there the character count and addrcss

microFORTH Technical Manual Page 49

(these arce the arguments for TYPE).

These words are all defined in Screen 12 if you wish to study them.

For example, the word .D is often defined to print an integer with a specified

number of decimal places:

12345 2 D prints 123,45

The definition of .D might be
DECTLMAL
'Lt 46 HOLD ;
HES)) <R DUP ABS <# R> 0 DO # LOOP '.' #S SIGN #> TYPE ;

Here <R saves the decimal places count, while DUP ABS prepares an unsigned number
with the sign beneath., The word '.,' inserts the decimal point in the output buffer,
Note that the digits after the decimal point are generated first, in the DO-LOOP.

All number conversions are made using BASE as the base, Thus, if you had the time
in seconds and you wanted a word which would print hh:mm:ss, you might define it

this way:

OCTAL : ':' 72 HOLD ;
100 # 6 BASE C! # ':' DECIMAL ; Dec IFMAL
: .SEC <& :00 :00 it # #> TYPE SPACE

Here changing BASE was all that was neceded to get the leading digit of scconds and

minutes to print and carry properly.

You will note the explicit use of the word TYPE everywhere. The implication of this
is that if you want to send your text string to a device other than the terminal,
you may simply substitute another output command for TYPE. If you are doing this,
you'll want to leave TYPE out of the formatting words themsclves and put in a

separate definition, as has been done with . itself:

(.) DUP ABS <# #S SIGN #>
-, (.) TYPE SPACE ;

microFORTH Technical Manual Page 50

Thus, if WRITK were defined to write on some other ASC1I device, you could define .W

thus:

N (.) WRITE ;

then

SEC @ W

would write the value of SEC on that device in ASCI1 characters,

8.3 Text Output

Text for titles and remarks is best kept on disk, if disk is available, On disk
systems the word MESSAGE is defined to type out a specificd line counting from the
Oth line of a screen 23, For example, 16 MESSAGE prints out the 0th line of screcn
2, Messages are printed till the last nonblank character of the line, plus one
trailing blank. Eaeh mcssage is up to 68 characters long, so there are 16 of them

in a screen. Messages are put in the screens using the EDITOR.

If you need titles wider than 68 characters, you may write a definition of TITLE
similar to that of MESSAGE, with a sultable width, Perhaps you would want to add a
CR (which types a carriagc rcturn and linc fced) before or after Lhe title; since

MESSAGEs may nced Lo appear anywhcre, there is no CR in the definition of MESSAGE,

For applicationg for which disk will not be available, text strings must be compiled

into memory. This is accomplished by the word [

The word [is placed inside a definition followed by text terminated with the)
character. HRemember that [is a word and must be followed by a space that is not
part of the text string. The Lext between the [and the] is inserted into the

definition preceded by a refercnce Lhat will cause it to be typed and skipped over.

NOTE : [may only be used inside a definition.

microFORTH Technical Manual Page 51

To see an example of [in use, define

: HELLO? [BUMBUG!] ;

then type HELLO? and obscrye the response.

Due to the fact that a "sereen" of source text occupies 8 blocks (sectors) on disk,
an additional rulc must be observed when using [in sourcec text: a text string
inside a [structure must not extend across sector boundaries. This means it may

not extend off the end of an odd-numbered linc into an even-numbered line.

The use of bracketed text output does not elegantly lend itself to the generation of
strings containing special control characters, The word MSC is used to generate
output strings with special characters In a more visible way. Take, for example,

the definition of CR, which outputs a carrlage return and line feed:

HEX
MSGCR C, ODC, OAC, O, O,
DECFMAL

The 6 gives the length of the string which 1s explicitly compiled (using C, or ,)}
after the definltion. The four 0 bytes are provided as timing characters as needcd

by some terminals.

microFORTH Technical Manual Page 52

9.0 FORTH PROGRAMMING TECHNIQUES

Since FORTH is interactive, you will spend much more time at your terminal and less
at your desk than with non-interactive techniques, You will generally want to wurite
down some notes about the problem you are about to solve, perhaps, and a few lines
of program, I1f it is a big problem, you will want to outline your proposed program
in some detail. Then you sit down at a FORTH terminal and type. Your procedure
will be to enter a definition or two, test them to your satisfaction, and then
combine them to form more powerful definitions, until the problem is satisfactorily
described. To keep your definitions permanently, you may edit them into a screen or
more of a source text which will be kept permanently on mass storage. You may

modify these screens, load them, and re-test.

9.1 Qverlays

To facilitate testing (and also to allow mutually exclusive sub-vocabularies to
replace one another), you may wish to mark a place in the dictionary with a null
definition, so that at some future time typing FORGET and the name of the null entry
will cause al)l of the dictionary generated since that entry to be discarded (or
"forgotten"). Thus, when you begin typing provisional definitiors, it is advisable

to type something like

: TEST ;

Later, when you are ready Lo reload your test definitions, or if you fcel the

dictionary is becoming too cluttered, you may type

FORGET TESY

microFORTH Technical Manual Page 53

and everything entered in your dictionary beyond (and including) TEST's location
will go away. A word may be re-defined as often as you like--the most recent entry
will be the one used thereafter--but the obsolete cntries remain, taking up space.
Alternatively, you may FORGET any normal dictionary entry, again discarding that
entry and everything following it.

If the compiler should generate an error message before reading the ; at the end of
a definition, then you will not be able to forget that definition. This happens
because the name of the current definition is incomplete until it is patched up by

the ; .

By being able to forget collections of words you can create sub-vocabularies to be
overlaid by other sub-vocabulariés. The cross-compiler is such a sub-vocabulary, as
is the EDITOR on the COSMAC. You may want to have several, each containing an
application you're working on. 1In the common vocabulary one will want to give a

name to the first screen of each:

I3 CONSTANT CALCULATOR 83 CONSTANT IGNITION

120 CONSTANT COUNTER 180 CONSTANT ROBOT
and at the end of the common voecabulary a null definition:

: TASK ;

Each of these screens will load the other screens that are included in the same

sub-vocabulary. The beginning of each initial screen will contain:

FORGET TASK ¢ TASK ;

The FORGET TASK will discard any of the other sub-vocabularies that might be loaded
(the null definition of TASK takes care of the case when none is loaded). Then the
new definition of TASK marks the beginning of this sub-vocabulary so that it might

be discarded later on. In use, one can change overlays casily by typing:

CALCULATOR LOAD

microFORTH Technical Manual Page 54

or

ROBOT LOAD

without having to worry about discarding an incompatiblec sct of routines.

9.2 Diagnostics

When you type a definition, or use an untested definition, or load a newly edited
block, you may get a diagnostic. Diagnostics are very simple., There are only 3

standard ones. The first is
word 7
This means that "word" is undefined., That is, it could neither be found in the

dictionary nor converted as a number. You may have forgotten to define it, or

loaded something which referenced it before it was defined, or simply misspelled it.

The most common diagnostic is

STACK EMPTY!

This means that either the word you typed or one it used expects a parameter on the

stack and finds none (stack underflow).

The third diagnostic is

DICTIONARY FULL!

which is given whenever the top of the dictionary comes within a certain distance of
the top of the stack. When you receive this message, you should considcr such
expedients as placing arrays in virtual memory (disk), and organizing your

application into overlays.

FORTH checks for stack underflow and dictionary overflow after interpreting each

gsource word of the input stream, cither from terminal input or whilec loading a

microl'ORTIl Technical Manual Page BYH

screon,

Each of these diagnostics uses the standard abort routine, QUESTION. QUESTION
repeats the offending word and issucs a MESSAGE whose number is a parameter to
QUESTION. It CLhen empties both stacks, pushes the current block number onto the
parameter stack, and quits (i.e., awalts keyboard input). If the error occurred
within keyboard input, the top of the stack will contain a 0. If you were loading
screens at the time, you may now type ., (period} to find out the block number within

the screen being loaded at the time the error occurred.

You may use QUESTION for your own diagnostics (provided you have a disk and terminal
in your application) by creating your own crror MESSAGE (see Section 8.3) and using

its number as a parameter to QUESTION.

9.3 Testing

When you are testing a new definition, it is a good idea Lo type . after executing
it to make sure there are no numbers left on the stack except those you expect to be
there. A definition that accidentally leaves numbers on the stack can ecause subtlc
and unpredictable things to happen in entirely unrelated parts of the program!

Remember the rule that ALL WORDS SHOULD DESTROY THEIR PARAMETERS AND LEAVE ONLY
EXPLICIT RESULTS.

Similarly, whenever you are compiling a new definition or loading a newly edlted
acreen, be aure to start out with an empty stack; then check to see the atack is
still empty when you are done. Extra items left on the stack are a sure sign of an
IIF with no terminating THEN, a BEGIN with no BEND, or a DO with no LOOP. On the other
hand, assuming the stack started out empty, too many ENDs or THENs will terminate
compilation with a STACK EMPTY! message. The best way to empty the stack is to type
. until you get the STACK EMPTY| message and then type . one more time to remove the

item left by the error message,

If your definition doesn't work and the examination of the text doesn't reveal the
problem, the standard procedure is to type the words which are used in the
definition until something gees wrong. You may monitor the behavior of the stack

along the way by Llyping oul the numbers on it until it is empty, then typing those

microFORTH Technical Manual Page 56

numbers again to put them back (in the right ordert). Of coursc you must simulate

the behavior of DO, BEGIN, or IF structures.

You may wish to define a word to dump the stack contents non-destructively, thus:

) 'S S0 @ OVER ~ DUMP ;

Because DUMP dumps bytes whereas the stack contains 16~bit numbers, you may wish to

define your own DUMP that will output 16-bit values and usc it in ?8S.

As repeated stack underflows or overflows may be fatal, it is strongly advised that

you test loop contents carefully before running the loop.

Do not try to execute too many levels of untested definitions at once--multiple

errors can so muddy the watcrs as to make debugging extremely difficult! Test the

lowest levels of new definitions thoroughly before testing words that use them,
FORTH's extreme modularity keeps debugging very simple if you always follow this

rule,

9.4 Top-Down Design

Although you do test programs--and load them--from the lowest to the highest levels
of complexity, you should try to design and write them in top-down fashion.
Defining a bunch of low-level words that you think "should be useful" and then

trying to integrate them is a sure way to waste time and effort! Suppose that you

decide that you want to type

5 PHOTOS

to make % photographs with a processor-controlled camera, Naturally, you will want
the definition of PHOTOS to contain a loop in which the key word is PHOTO--which

takes one photograph:

PHOTOS O DO PHOTO LOOP ;

PHOTO will have certain fairly well defined things to do: open the shutter, time

microFORTH Technical Manual Page 57

the exposure, and close the shutter, for example. So PHOTO might look like this:

PHOTO OPEN SEC € EXPOSURE CLOSE ;

Here you have introduced a new operational clement, the setiing of exposure time

variable SEC. 8o now the full operational sequence is

10 SEC | 5 PHOTOS

Then, depending on the way the hardwarc is set up, you might define OPEN and CLOSE

something like this:

: OPEN 0 SHUTTER ; : CLOSE t SHUTTER ;

where SHUTTER must be defined Lo send the specified code to the camera shutter.

The process of generating the definitions necessary to perform an operation tends to
be very much the same as illustrated here regardless of the actual application. The

important things to note here are:

(a} The top-down method of organizing the definitions (even though they

must be tested and loaded in reverse order}; and

(b) The extreme simplicity of cach level in the proeess. Each single
operation should be defined separately, and all should be kept as

simple as possible,

Not only will this make things wuch easier for you during devclopment, the
avatlability of the lower level definitions will come in handy when some

modifications are needed or when there is equipment trouble.

microFORTH Technical Manual Page 58

The dictionary is a linked list of variable--length entrics, It grows toward high
core and each entry points to the one that precedes it. The beginning of the last
entry is pointed to by the variable CONTEXT., It identifies the head of the chain to

be searched. The next available word is pointed to by the variable H and mway be put

on the stack by the word HERE.

The dictionary 1s searched by following the chain until a match is found or the

bottom reached. This organization permits a word to be redefined, since the latest

definition will be found first.

As Figure 5 shows, the dictionary can be rather naturally divided into three parts:

The PROGRAM is pre-compiled (on the same coupulter or any other FORTH
computer), and contains about 60 defined words from which all other words
can be defined, It is difficult, and normally unnecessary, to change

these words. In some microprocessor systems the program resides in ROM.

The FORTH VOCABULARY is compiled when you load FORTH. It is common to all
applieations, and though you may change it as you wish, you probably

won't.

The APPLICATION VOCABULARIES contain those words peculiar to your
applications., You will be changing, rearranging, and adding to these

vocabularies continually during the development process.

Irom the point of view of Che scarch algorithms, these vocabularies are

indistinguishable. You can, however, distinguish tLhem---and other

microFORTH Technical Manual Page 59

n lavaitabee
_ _ Memoaiy} CD

///‘

AN

CONTEXT
3o

Lp

i

(“ —

A ——

ff: ‘k-_fiﬁfi | Y

hN
|
|
NN

NN N NN
i
N

] S \:2‘_____ / L e o

PROGRAM FORTI APPLICATION

0—

Figure 5
FORTH Dictionary
A compiled dictionary contains segments of logically related

definitions, which in turn may be thought of as divided into
three major groups.

BYTE
0 | chanaecen count
] [14t characten
2 l | Znd chanacten
3 r I 3nd chanacten
4
. }ﬂin.‘z Lo vrev,
? entny
}code address
8
9 },v_:afm.metelt field

conkinuntion of
varameten fLeld
,‘,

Figure g
8-Bit Dictionary Entry Format

microFORTH Technical Manual Page 60

subvocabularies--by being able to discard them. For example, you might discard one
application vocabulary and replace it with another as illustrated in the chapter on
programming techniques, All vocabularies are linked to the central FORTH
vocabulary, which means that a scarch will start at CONTEXT and thrcead back to

FORTH, then through it.

The essential structurc of all dictionary entrics is the same regardless of the type
of entry (nouns, verbs, etc.). This structure is diagrammed in Figure 6. The first

I bytes are called the pame field and contain the count of the number of characters

and the first 3 characters of the word, HNote that although this gives you far more
flexibility in naming words than a simple limit on characters, it does require
uniqueness in the first 3 characters of words of the same length., HNote also that

any characters you c¢an typc on your terminal are valid for use in words being

defined.

The next 2 bytes, called the link ficld, contain the location of the first byte of
the next previous entry. This is to facilitate searches, which start at the
"reecent" end of the dictionary and work back. This searching order is nccessary in
order that the most recent definition of a word will be the one used. #Hlso, since
in a developed application the user is dealing with the highest level of the
program, it optimizes search timec. Finally, although this is less relevant in

microprocessors than in minieomputers, this searching order permits a "tree" of user

Vocabularies, coming together at the trunk FORTH. (Sec Chapter 14.0, VOCABULARIES).

The next 2 bytes contain a pointer to the code to be executed for the definition.

This codc address depends oh the type of word:

For a CONSTANT, the pointer refers to code that puts the valucg of the
constant (which is in bytes 8 and 9 of the definition) on the stack (see

Figure 7).

For a VARIABLE, it refers to code that puts the address of the value (byte

8) on the stack.

For a : definition, it points to a portion of the interprcter, which will
begin following a string of addresses in byte 8 and continuing until the ;

which terminated that definition is encountered. A diagram of a

microFQRTH Technical Manual Page 61

Link Lo prew,
entny

addr, of code
gon :

addn, of 1']

Litenal I\] 3

| A |
} £ink Lo nrev,
endhy

addr, of BASE

} addr. of code
fon CONSTANT

0 addn. of !

addn, of ;

Figune 7 Figune §&

Dictionary entry for Dictionary entry for

17 CONSTANT NUMBER DEC1MAL A BASE 1 ;

(Stores 120 in the parameter field of BASE)

microFORTH Technical Manual Page 62

definition is shown in Figurc 8.

For CODE, the pointer is to byte 8 itself, which contains the beginning of

the code, which is simply executed directly.

Other kinds of entries have code addressecs that point to the appropriate code and

will be discussed in Chapter 13.0 (SPECIAL DEFINING WORDS).

The eighth and subsequent bytes are sometimes ecalled the parameter field, which is
of variable length. CONSTANTs and VARIABLEs kecp their values in bytes 8 and 9 as
noted above, Other kinds of words may keep several values. JIn the latter cases,
the length of the parameter field is either determined by the type of word or is

kept in one of the early words of the field.

microFORTH Technical Manual Page 03

11.0 THE INTERPRETER

Everything FORTH does is controlled by its interpreter, The interpreter itself is
quite small. But it controls several important routines, some of which are
invisible to the user, including number conversions, dictionary searches, generation
of dictionary enlries, management of the staci, etc., Some of these functions arc
very intricate, In this chapter we will explain what the interpreter does and how

you wWill use it,

11.1 Interpreting a String of Hords Typed at the Terminal

Your main communication with FORTH is through a terminal, You type one or more
words which are interpreted and obeyed. If you have requested something to be typed
out, it will be; whatever you have rcquested, FORTH will cheerfully reply 0K. The
OK not only notifies you that your rcquest has been satiafied, it also signifies

that FORTH is ready for you to type more commands,

The operations that have been performed before the 0K reply consist of the

following:
1) A word is taken from the terminal line buffer, which is also called
the input string. (Remember, a word is a character string that is

bounded by spaces).

2) a, If it is a word which ¢can be found in the dictionary, the codc

for that word is cxcouted.

b, If it is a number, it is converted to binary, using the value of

microFORTH Technical Manual Page 6}

the parameter BASE as the base, and pushed on the stack.

o If neither of the above is possible, the word is sent back to

Lthe user with a ?

3) Following successful completion of 2a or 2b, the interpreter
continues on to the next word, if any. At the end of the string of
words, it says OK. Therefore, you may string together a number of

comnands and Lhey will be interpreted and executed, one at a time.

The actual work of taking a word from the input buffer is performed by the routine
called WORD. WORD places the word, starting at HERE, with the count of characters
in the first byte, This is the same initial structure as the name field of the
dictionary definitions, The actual work of searching the dictionary is performed by

-FIND.

WORD and -FIND are used by the command ' (tick), which was mentioned in Chapter 3.
' reads the next word in the input string and looks it up in the dictionary,
returning on the stack the address of the parameter field of the entry if one is

found .

11.2 Interpreting Soupce Blocks

If you type a load command such as

63 LOAD

the interpreter operates in a slightly different mode, since in the process of
exccut ing the word LOAD it must interpret words in a text screen read from disk or
tape, rather than from the terminal line buffer. It keeps track of what screen it
is taking its LOAD instruction from; the terminal, for this purpose, is "screen 0",
The only difference in interpreter behavior between operating on "screen 0" and any
other screen is that only "screen 0" gets an 0K on completion. Note that just as
"screen 0" may load a screcen, that screen may in turn load other screens. The

nunber of the current screen being interpreted is kept in the user variable "BLK".

microFORTH Technical Manual Page 65

Normally this method is used to load {(compile) vocabularies into memory., But this
same technique may be used to perform operations which are infrequently performed

and not especially time-critical, and thus not worth allocating memory for.

11.3 Compiling Definitions

If the interpreter encounters a command, it will be executed. The defining word :
causes the interpreter to behave in a special way. A colon not only generates the
beginning of a dictionary entry for the word immediately following the colon, it
also sets a flag called STATE for the interpreter. Thereafter, when the dictionary
entry for a subsequent word in the input string has been found, its precedence bit (
upper bit in count fileld) will be compared to STATE. If the precedence is less
than STATE, the word will not be executcd--its address will be placed in the
dictionary entry being compiled. The use of IMMEDIATE for increasing the precedence

of a word 13 discussed in Section 5.8.

11.4 Executipg Definitions

The code address for : definitions points to a routine which sets FORTH's
interpreter pointer, I, to the parameter field of that definition, and executes
NEXT. (Please don't mistake this 1 for the I that fetches the DO-LOOP counter or
the EDITOR's 1.) The interpreter's 1 is only referenced in assembler code. NEXT is
the most fundamental routine of the interpreter (sometimes called the inner
interpreter). It is the basic loop that goes on to the next word, controlled by I,
Hhen a : definition is being executed, the interpreter is going down the addresses
supplied in the definition, then going off to execute whatever is at those
addresses., Of course, these addresses wmight point to other : definitions, and so
on; therefore the code for : also saves the current 1 on a special push-~down stack
called the "Return Stack"., Ancillary uses of the Return Stack were discussed
earllier. This is the primary function of the Return Stack. The code for ; ,
therefore, pops I off the top of the Return Stack before returning to NEXT. Of
course, at the top of any of these chains of pcianters is a CODE definition, and all
CODE definitions also end by executing NEXT (often after passing through stack
manipulating routines)., 1t is clear, then, that the gretest overhead in running

FORTH is in this interpreter loop; great pains have becn taken to code it as tightly

microFORTH Technical Manual Page 67

39 2 MATH

would yicld 27, the product of 3 and 9, Within the definition of MATH, the DUP

changes the index Lo a 2-byte index, FUNCTION + adds this index to the base of the

FUNCTION table, and 8 EXECUTE fetches and executes the intended word. This kind of

technique 1is espccially useful when the function index is a computed value, as might
be the case in decoding keyboard inputs.

microFORTH Technical Manual Page 68

12.0 THE ASSEMBLER

Forth can assemble machine-language definitions of words. Among the many examples

of words defined by machine-language instructions are thc arithmetic operations:
+ = SWAP DROP u% U/

Such words are called code definjitions and are constructed using the assembler
command CODE, The assembler is not intended for conventional programs. FORTH code
routines are distinguished by the fact that all end by rcturning to the inner
interpreter rather than by executing a conventional subroutine return. The
assembler for your particular CPU is detailed in an appendix to this manual, This

chapter provides a general overview of the assemblers on all FORTH systems.

CODE entries have a standard dictionary entry with the code address pointing to the

next byte (the parameter field) where machine instructions are assembled,

To compile a colon definition, the interpreter enters a special comnpile mode, in
which the words of the input string are not cxecuted (unless designated IMMEDIATE)
but rather their addresses are placed sequentially in the dictionary. During
assembly, on the other hand, the interpreter remains in execute mode. The mnemonics
of the processor in question are defined as words, which, when executed, assemble
the corresponding operation code at the next location in the dictionary. As
elsevhere in FORTH, operands (addresses or registers) precede instruction mnemonics,
Depending on the processor, several kinds of instructions and addressing are
possible. 7These are defined in the FORTH assembler for each proccssor, to assemble
instructions in the appropriate format, given the mnemonic operation code and
wvhatever additijional parameters are necessary Lo describe the instruction. The

instruction is assembled into the next available location in the dictionary.

microFORTIHl Technical Manual Page 09

For example, the 8080 processor has an ALU reference instruction format for
instructions that perform arithmetic computations., The FORTH assembler defines the
command ALU, which is used to define mnemonics of the ALU class, which in turn
assemble ALU reference instructions. For example, the mnemonic ADD is defined on

8080 systems by

80 ALU ADD

Then ADD is an operation which assembles an ALU type instruction whose numeric code

is:

80 (hexadecimal)
and whose operand will be on the stack. In use,
L ADD

assembles an instruction which, when executed, will add the contents of the L

register into the accumulator,

It is necessary when you are using CODE to separate Iin your mind the way you are
using the stack at assembly time and at execution time. The words in a code entry
are gxecuted at asgembly tiime to create machine instructions which are placed in the

dictionary to be executed themselves later. Thus,

HERE 2 - TST

at assembly time places the current dictionary location on the stack (HERE) and
decrements it by 2. The resulting number is then thc parameter for TST which

asgembles a machine instruction which is the equivalent of
TST #-2

in conventional assembler notation. Similarly, such words as SWAP and DUP are
executed at assembly time to manipulate the parameters being used by assembler
words, although they arc compiled into the dictionary in : definitions.

microFORTH Technical Manual Page 70

12.1 Code Endings

Code must end with a jump to the inner interpreter. This is a special routine
called NEXT, because its primary function 1s to execute the next FORTH word in a

colon definition., On sowe processors the jump to NEXT is explicit:

NEXT JMP

On others, a macro called NEXT is used to assemble the appropriate code., Several
words are available to modify the stack before returning to NEXT; these are
summarized in Table III. Not all of these are available on all processors; consulg

the appendix for your processor,

12.2 Notational Conventions

Although the FORTH assembler uses, for the most part, the manufacturer's mnemonics,
there are some standard FORTH notational conventions that arc shared by all

assemblers., Fundamental FORTH pointers have standard names:

S Address of top of parameter stack.

W Address of paramecter field of the current definition.
I Interpreter pointer.

R Address of top of return stack.,

U Beginning of user area.

Thesc are registers if possible, but may be in memory. Refer to the appendix for a
discugsion of their allocation on your system. Wherever they may be, these names

may be used in code to refer to the areas.

In definitions beginning with : the execute=time manipulations of the stack are

microFORTH Technical Manual Page T1

TABLE II1.

ASSEMBLER RETURN LOCATIONS

Words Usecd to

Terminate Contents of Stack Stack

CODE entry Explanation Register O before After
Top TOP

PUT Heplace top of stack 12 6 12

with contents of
register 0.

PUSH Push contents 1 h il 1
Kegister 0 onto
top of stack.

pop Discard top of 2 1 2
stack.

BINARY POP followed by 9 80 3 9
PUT

(Assembler -eturn locations modify Lhe stack and return to NEXT.
Please NOTE: some processors use a different register than register 0.)

wicrolFORTH Technical Manual Page 12

automatic. CODE, however, requires that parameters be handled explicitly, using S
(the parametcr stack pointer) and the code~ending returns that push or pop the stack

before cxecuting NEXT.

Other standard FORTH assembler notation includes the right parcnthesis, which
indicates relative addressing when it's by itself, or indexing if combined with an

index rcgister designation.

S) Addressing relative to the top of the stack.
S) Indexed by S.
1) Indexed by register 1.

On machines with automatic incrementing or decrementing, the parcnthesis may be

combined with + or - ., On the LSI11, for example,

S)+ Refers to the number on top of the stack, "popping" it off at

the same tiwme; that ia, incrementing the stack pointer.

S) Refers to the next available location on the stack, a '"push"

operation.

Immediate addressing is indicated by # and memory indirect by the right parenthesis
again; the assembler can determine from the address whether) means
register-relative or memory-rclative (indirect). 1In addition, there are specific

items of notation for each processor--thesc are described in detail in the appendix.

Parameters may be taken directly from memory, if this is permitted by the
architecture of the processor, The assembler will automatically check to determine
whether the address of the argumenl permits a short format instruction, and, if it
will not, an extended format will be used. Often parameters may be picked up
without being named, So long as an address is on the stack, it doesn't matter how

it got there:

HERE 5% C, . . . LDA

microFORTH Tcchnical Manual Page 73

Will enter the constant 55 in the dictionary and leave its address on the stack at
assembly time. (The operation C, puts the low-order byte of the number on the stack
into the dictionary at HERE and increments H by 1.) The instruction LDA coming
later will encounter the address on the stack and assemble an instruction to move

its contents to the A register,

12.3 Macros

Macros may be defined easily in FORTH using : definitions which contain assembler
instructions. For example, on the COSMAC one frequently uses the operations DEC and

STR successively on the same register., For convenience, the macro:

: DST bUP DEC STR ;

has been defined., Then S DST will assemble the two instructions:

S DEC S STR

Note the way the DUP in the definition of DST has allowed the single parameter S to
be used by both mnemonics DEC and STR.

But macros are mainly a convenience; DST assembles 2 instructions, just as if you

had written the expression out in full,

12.4 Example

As an example of the action of the assembler, consider the COSMAC code definition

for the operator DUP:

CODE DUP S LDA T PHI S LDN S DEC
S DST T GHI PUSH

This will reproduce the top number on the stack. The action of the assembler in
constructing this CODE entry is given in Figure 9, The resulting entry is shown in

Figure 10.

microFORTH Technical Manual

Hord

lll.)n

Pl

S
LDN

S
DEC

bDST

GHl

PUSH

Page T

Action during assembly

Put 13 (stack pointer register's
number') on stack.

Assemble a [L.DA instruction
referencing register 13,

and put it in the dictionary.

Put 4 (temporary work register's
number) on Lhe stack,

Asscmble a PHI instruction
referencing register 9

and put it in the dictionary.

Put 13 on the stack.
Assemblc a LDN instruction
referencing register 13,

and put it in the dictionary

Put 13 on the stack.

Assemble a DEC instruction
referencing register 13,

and put it in the dictionary.

Put 13 on the stack.

Asscmble a macro: a DEC and a STR,
both referencing register 13,
putting them in the dictionary.

Put G on the stack.

Assemble a GHI instruction
referencing register 9 ,

and put it in the dictionary.

Asscuble a macro: S DEC,
S STR and a branch to NEXT.

Figure 9
Action of assembler

J

s e L

Aclion during execution

Load accunulator with
top byte of stack and
increment stack pointer.

Store accumulator in top
bytc of T register.

l.oad accumulator with
low~order byte on stack.

Decrement stack pointer,

Decrement stack pointer
and store accumulator at
byte now addressed by S,

Fetch high-order byte
from T register.

Dcercment S, store
accumulator and branch

to NEXT.

Assembly of DUP on the COSMAC

microFORTH Technical Manual Page T5

S’ link address
} code address

S LDA

T PHI

[s Lon

S DEC

S DEC

S DST

S STR

T GHI

S DEC

S STR PUSH

(NEXT) F SEP

Figure 10

microFORTH Technical Manual Page 76

12.9% Logical Structures

Control of logical flow is handled by FORTH's assembler using the same structural

approach as high--level FORTH, although the iwmplementation of the commands is

necessarily different. Thc commands cven have Lhe same names as their high-level

analogucs; ambiguity is prcvented by use of separatc Vocabularies (sec Chapter 14).

The following are implemented as standard macros:

The ELSE
analogous

instance,

BEGIN

END

NOT

IF

ELSE

THEN

Puts an address on the stack (HERE).

Assembles a conditional jump back to address left by BEGIN. It
is preceded by a condition code, The loop is ended if the

condition is met. Common condition codes are 0= and 0<, as

appropriate to the various CPUs,

Negates condition code.

Assembles a conditional forward jump, to be taken if the
preceding condition is false, lcaving the address of this

instruction on the stack,

Provides the destination of IF's jump (whose address was on the
stack) and asscmbles an unconditional forward jump whose

location is left on the stack.

Provides the destination for a jump instruction whose location

is on the stack at assembly time {(left by IF or ELSE).

clause may be omitted entirely. This construction is functionally
to the IF..,.ELSE...THEN construction provided by FORTH's compiler, For
0= 1IF (code for 0) ELSE (code for not 0) THEN. ..

0= IF (code for Q) THEN...

microFORTH Technical Manual Page 7

Since the locations or destinations of branches are left on the stack at assembly
time, the structures BEGIN , . . END and IF . . . ELSE . ., . THEN may be naturally
nested. However, by manipulating the stack during assembly, the programmer can
asgemble any branching structure. If you wish to branch ferward, use 1F to leave
the location of the branch on the stack. At the branch's destination, bring the
location back to the top of the stack (if it 1is not there already) and use ELSE or
THEN to complete the branch by filling in its destination at the location on top of
the stack. If you wish to branch back to an address, leave it on thec stack with
BEGIN, At the branch's source, bring the address to the top of the stack and use
END or a jump mnemonic to assemble a conditional or unconditional branch back. Be
sure to manipulate the branch address hefore the condition mnemonic as the condition

codes add one item to the stack.

Suppose, for cxample, you wish to define a word LOOK, which takes a delimiter on top
of the stack, and a starting address under it, and scans succecssive bytes till it
finds either the delimiter or a zero. The number of c¢haracters scanned is returned.

Here is a definition of LOOK for the 6800:

CODE LOOK B PUL A PUL TSX O) LDX
BEGIN 0) TST 0= NOT IF
G) A CHMP 0= NOT IF B 1NC ROT JMP
THEN THEN A CLR T3X PUT JMP

Here the two phrases 0= NOT IF assemble conditional forward jumps which will be
executed if the character scanned is the same as one of the delimiters. If the
loop is to be repeated, after incrementing B we must JMP back to the BEGIN. The
intervening IFs have left their locations on the stack, so the branch must be
assembled by ROT JMP. The ROT, executed at assembly time, pulls the address left by
BEGIN to the top of the stack where it is used by JHMP as its destination. Finally,
the THENs fill in the destinations of the IFs.

There are no labels in FORTH. You could define Lhem, but their function is better
performed by the CODE names It, ELSE, THEN, BEGIN and END. Since CODI definitions
are usually extremely short, labels are not particularly desirable; they tend to

encourage complicated flow patterns that are not appropriate in FORTH,

Some processors permit you to use literals directly in code; on these, ,CODE is

microFORTH Technical Manual Page I8

rarely encountered,

12.6 Device Handlers

Device handlers should be kept extremely short, including only the instructions
required Lo pass a value to or from the stack or Lo issue a command. Consider, for
example, a self-scan charactcer display which is interfaced to a COSMAC as device 2.

This is all that is needed to output one character from the top of the stack:

CODE DISPLAY 3 INC S SEX 2 OUT NEXT

In this example, S INC increments the stack pointer (to get the low-order byte), S
SEX sels 3 as the output register, and 2 OUT sends the character to the device,

incrementing S again to complete a POP,

Given the definition of DISPLAY, you can then define TYPE at high level to display a

string of characters whose byte address and length are on the stack,

: TYPE 0 DO DUP C@ DISPLAY 1+ LOOP DROP ;

To convert and display a number on the stack, you might define PRINT:

PRINT (.} TYPE ;

Here (.) performs the conversion, leaving the address of the resulting string and
its length for TYPE (see Chapter 8.0, OUTPUT). The point here is that, given the
simple code definition DISPLAY, you have easy, full control of the display in
high-level FORTH.

12.7 Time and Memory Trade-Offs

It should be clear by now what the relative trade-offs in time and memory efficiency
are between CODE and : definitions. CODE will be almost exactly comparable to
conventional assembler code, with some advantage due to the handy convention of the

stack, which saves the time and complexity involved in paramcter passing. On the

wicrelFORTH Technical HManual Page 79

other hand, : definitions are very much more compact, being only a string of
addresses of previously defined words. The coabination of CODE and : definitions

means that the overall programs will be extremely compact, as even short codeo

strings will rarely be repeated,

Suppose, for example, you have an d-byte code string that performs a useful
function. It may at first glance scem ridiculous to double its length by making a
dictionary entry out of it, but since every subsequent refercnce Lo it takes one
word, it will take very few uses to recover the cost, and from then on you will save
6 bytes for every usage. Furthermore, in a cross-compiled application, the space
cost of the original definition is reduced to only 2 bytes plus the actwal codel
Clearly, the saving will be greater for longer strings. However, you should only

perform a single logical operation in one CODE definition,

mnicroFORTH Technical Manual Page 80

13.0 SPECIAL DEFINING WORDS

An important aspect of FORTH is its ability to define new words. New definitions
and code are devised frequently. Likewise, new constants or variables may be
created. A more challenging and significant creativity, however, is involved in the
definition of new kinds of words. Neilther : definitions nor CONSTANTs nor any other
kind of common word, these can share the attributes of both nouns and verbs. Some
special defining words are available to enable the user to develop these new kinds

of words.

The identity of a FORTH word is established by the first 6 bytes--the name and link

fields. The character of the word, that is, the way it will behave when used, is

determined by the next 2 bytes, its code address. So far we have considered the
generation of all of these bytes to be a single function, Now we shall consider the

management of the code address as a special activity.

A word which constructs a dictionary entry is called a defining word. The most
basic defining word is CREATE, which installs the name, link and code address fields
in the dictionary, leaving the code address pointing ahead to tLhe first byte of the
parameter field. CREATE does not actually reserve any bytes of parameter field,

however,

The FORTH program also supplies the defining words : and CONSTANT. A few more are
built in from these, of which the most frequently used are CODE and VARLABLE. These
themselves are defined so that they first use either CREATE or CONSTANT to construct
the dictionary entry for new words and then replace the code address with another

that wil) reflect the special behavior of the new kind of word (e.g., VARIABLE).

microlFORTH Teehnical Manual Page 41

13.1 Use of ;CODE

The word ;CODE cenables the user to create new classes of words by speeifying the
custom code for the code address of bLhe words of a elass, Let us examine the
definition of VARIABLE in detail, in order Lo understand this process so that you
may generalize from it, We will have to Keep well in mind that Lhere are 3 moments
in time whieh are of interest: the time when the word VARIABLE is defined, the time

when VARIABLE is executed to define a new word, and the time when a word defined
by VARIABLE is invoked to push the address of the paramecter ficld of Lhe word onto

the stack.

The definition of VAR1ABLE for the 8080 microprocessor is:

t VARIABLE CONSTANT ; CODE
W INX W PUSH NEXT JMp

When this definition is compiled, it produces the entry shown in Figure 11. Given

that definition, thc phrase

O VARIABLE H

will cxecute VARIABLE to construct a dictionary definition for M. The code address
of M will point to the first instruction after ;CODE in the definition of VARIABLE.

The execution of VARIABLE to compile M performs these steps:

CONSTANT reads the word M from the input message buffer and
constructs a dietionary entry for it. “The code

address points to the code for CONSTANT, and the
parameter field is initialized to the value on Lhe

stack, in this case 0.

; CODE completes the entry for M Ly replacing M's code
address wilh Lthe address of the word immediately
following the ;CORE in the definition of VARIABLE,

i,e,, with the address of the INX instruction.

The key word in the definition above is jCODE, which immediately precedes agsembler

mierolFORTH Technical Manual Page 83

code. VWhen VARIABLE is executed it performs the function of resctting the code
address of the word being defined to that of the code which immcdiately follows the

; CODE .

Note that the code phrase following ;CODE is not executed at the time M is defined,
Rather, when M is execulbed, the inner interprater will jump through H's code
address to the INX instruction. At Lhis time, the system parameter W will contain
one less than the address of the parameter field of the word being executed (that
is, M). (The exact offset of W from the parameter field is processor-dependent;
consul t the appendix for your CPU.) The W INX instruction increments this address
so that it will point to the location which contains M's value (the parameter

field); W PUSH places this address onto the stack; and NEXT JHP returns control to

the inner interpreter,.

The definition of what VARIABLE does is the same on all FORTH processors.

The key features of this technique to remember in order to define other kinds of

words are these:

USE A PREVIOUSLY DEFINED DEFINING WORD TO GRNERATE THE DICTIONARY ENTRY.
The most frequently used is CONSTANT, uwhich initializes the parameter
field. You may also use CREATE, which takes no parameters, or some other

word with similar properties.

USE ;CODE TO END THE DBEFINLTLON AND PLACE IMHMEDIATELY AFTER 1T THE CODE
YOU HWISH VO USE TO CHARACTERIZE THE NEW CLASS OF WORDS.

REMEMBER THAT WHEN YOUR CODE WILL BE EXECUTED, W WILL POINT TO THE ADDRESS
OF THE PARAMETER F1ELD OF TiiE MEMBER OF THE CLASS. Depoending on the
processor, W will contain the address of the parameter ficld minus 0, 1 or

2. Consult the appendix for your CPU,

Here arec some examples of words that have been useful in certain applications.

microFORTH Technical Manual Page 84

VECTORs are useful in applications that have a lot of 2- or 3--dimensional
variables, such as X-Y coordinates, latitude/longitude/bearing in
navigational systems, azimuth/elevation, etc. Reference to a vector

places one of the values on the stack, selected by the index. That is, if

we defined:

O CONSTANT X 1 CONSTANT Y 2 CONSTANT Z
3 VECTOR SCALE

We have a VECTOR named SCALE, of length 3. We can get selected values as

follows:

X SCALE C8 or Y SCALE C@ ete.

The code for VECTOR expects the index on the stack and automatically adds
it to the address of the beginning of the parameter field of any word

defined using VECTOR. Here's how the code for VECTOR might look on the

3080:
: VECTOR CREATE H +! ; CODE
W INX H POP W DAD HPUSH JMP
13.1.2 ARRAY
ARRAY defines an array in memory. When referenced, the index into the

array must be on the stack; it will be automatically applied just as for

VECTOR above, Here's an example of its use:

100 ARRAY DATA
RECORD 100 9 DO A/D 1 DATA C! LOCOP ;

This reads 100 numbers from an A/D converter and stores them in the array

DATE.

microFORTH Technical Manual Page 85

The code portion of the definition might be the same as for VECTOR.
Because this only handles byte indices, however, arrays containing 106-bit
data might double the index before adding it to the base. The first

portion of the definition might initialize the array to all zeros:

ARRAY CREATE HERE OVER ERASE H +! s CODE
W INX ... ete,

Here CREATE is used to create the basic entry and the phrase HERE OVER
ERASE clears as many zero bytes as there are to be entries in the array.
H +! encloses them into the dictionary by incrementing H so that the next

definition will begin after the requested displacement,

13.2 High-level Defining Words

It is also possible to define defining words entirely in high level. This can be

done using <BUILDS and DOES>. The form of such a definition is

[name] <BUILDS [words to be cxecuted at compile time]

DOES> [words to be executed as the definition of the defined word] ;

An example is

¢ MSG <BUILDS DOES> COUNT TYPE ;
HEX MSG SPACK 1 ¢, 20 C, DECIMAL

MSG is a defining word, used to define words which will output ASCLll strings. SPACE
is such a word defined by MS8G, to output a single space. The phrase 1 C, 20 C,
eonstructs an output string, consisting of a character count (1) and an ASCI1 blank
(20), in the dictionary. Figure 12 contains a diagram of Lhe dictionary entries for

DOES>, MSG and SPACE,

As with ;CODE defining words, therec arc two cxecutions to distinguish: when MS3G is

executed to define SPACE, and when SPACE itself is executed. The high level

definitions of both are found in the definition of MSG, DOES> marks the end of

microlfORTH Technical Manual

Page B85

—— S —
LV J l i]
[o] Lo]
[&] L6 |
link ——— link
R | — (BUILDS j {
—— CURRENT — - — DOES) —
@ ***COUHT*-*C
—
’———@—— : ~TYPE
— LT - ;
o ——— n -
+
|
——: LODE— /
ﬁ:imachine = - —
dependent
codq
Figure 717

Compilation of DOES>, MSG and :

HEX MSG SPACE 1 C, 20 C,

L_ s]

| s]

l P]

LA]
link

- code addeess —

- 4

infeepret
" address

I
3

20

L

microFORTH Technical Manual Pape B

MSG's execution. The remaining phrase (COUNT TYPE ;) is executed whencver any word

defined by MSG (such as SPACE) is invoked,
The definition of BUILDS> is just
<BUILDS O CONSTANT ;

This crcates a dictionary entry and reserves two bytes of parameter field, Later,
DOES> will store an address in these two bytes, The output string of SPACE (which
is explicitly compiled as 1 C, 20 C,) begins after this address, that is, in the

third byte of the parameter field,

DOES> terminates the execution of MSG, The succecding phrase (COUNT TYPE ;) will be
exceuted by SPAGCE. Howcver, before Lhis phrase is executed, the address of the
third byte of the parameter field will be put on the stack. This is, of course, the
starting address of the ocutput string. This address will serve as the argument to

COUNT, which proceeds to set up the paramelcers of TYPE,

The definition of DOES» is

DOES> R> CURRENT @ @ n + | ;CODE

followed by code to be described shortly. 1In the above definition, n is a
processor-dependent literal such that CURRENT @ 8§ n + is the address of the
paramcter field of the most recently created entry, in this case, to the 0 compiled
into SPACE by <BUILDS. (CURRENT is deseribed in Chapter 14,0, VOCABULARLES) The
effect of the phrase

R> CURRENT @ @ n + !

is to save the address of the phrase COUNT TYPE ; in the first two bytes of the

parameter field of 3PACE. Also, this removes the top of the return stack, in effect

terminating the execution of MSG.

Later, when SPACE is invoked, the ;CODE phrase of DOES> will be executed. This code

phrase does thiree things:

microFORTH Technical Manual Page 87

1. Saves the interpreter pointer on the return stack.

2. Resets the interpreter pointer with the address in the first two
bytes of the parameter field of SPACE, i.e., with the address of the
phrase COUNT TYPE ;

3. Pushos the address of the third byte of the parameter field of

SPACE on the stack. This becomes the argument of COUNT,

Another useful MSG is CR, defined in HEX by

MSG CR 6C, D¢, AC, 0O, O |,

The character count is 6, D and A are the ASClI codes for carriage return and line
feed, respectively, and the 4 remaining null characters sent whenever CR is typed

are required for timing in some terminals and printers.

An extension of MSG which reads a string of text and gives it a name which may be

used Lo type it out is STRING, defined (in decimal) by

STRING MSG 92 VORD HERE C8 1+ H +! ;

MSG sets up the initial definition, as above. 92 is the ASCII code for \ , which
WORD takes off the stack as its delimiter. WORD puts the characters Lyped at the
terminal following the name, until the occurrence of a \ , into the dictionary at

HERE but it doesn't advance H. HERE C8 1+ gives the length of the string, including
the count byte. The H +! increments H by this value, thus enclosing the string in

the dictionary. To use STRING, consider the definition of a word ERROR:

STRING ERROR BADIIN\

Thercafter use of the word ERROR would cause BAD!! to be typed out.

NOTE DEFINLTIONS SUCH AS THESE ARE WASTEFUI, OF MEMORY, ESPECIALLY FOR
LONG TEXT STRINGS. On disk systems the use of MESSAGE, which
keeps its text on disk, is preferred. This is, however, a good

way Lo handle messages in applications that will not have a

microFORTH Technical Manual Page 88

disk.

Another example of the use of <BUILDS and DCES> is the defining word FIELD, which is

used to define fields in a data block on disk:

FIELD <BUILDS C, DOEsS> C¢ B# & BLOCK + ;

Note that the word C, appears between the references to <BUILDS and DOES> in the
above definitions, <BUILDS and DOES> are separate words for essentially this
purpose, to allow the user to specify the implicit compilation of any size field to
follow the definition being created before that definition is completed by DOES>.
In this case C, compiles in the BLOCK offset that is later fetched by the C@.

Remember that words appearing hetween <BUILDS and DOES> will be exeeuted when the
new word is defined, whereas those words following DOES> are executed when the new

word is used.

Given this definition, you might define FIELDS thus:

0 FIELD NO. 1 FIELD KIND 2 FIELD VALUE N FIELD OFFSET

cte, In use it is assumed that B# is a VARIABLE containing the number of some dala
block. Then VALUE would feteh the address of the third byte of the block (in this
case VALUE is assumed to be double length) and OFFSET would feteh the address of the
5th byte, This basic concepl can be expanded to some elaborate data file management

capabilities.

Consider an alternate definition of VECTOR (with X, Y, and Z defined as above):

VECTOR <BUILDS DOES> + ;

and the definition of a VECTOR:

VECTOR CORNER 100 C, N3 C,

(Typing X CORNER C8 puts 100 on the stack and Y CORNER C# puts 40 on the stack.)

A comparison of this definition of VECTOR with the first one exhibits the wmajor

microFORTH Technical Manual Page 89

differences between DOES> and ;COBE, namely that the use of high=level FORTI
following DOES> is often more convenient than supplying code to follow ;CODE. This

method is also more machine independent..

Hopefully, it has been shown that different kinds of words may be usefully defined.
Basic FORTH provides onity CONSTANT and VARIABLE, but standard definitions of most of
the words discussed here are available. If you encounter more than one instance of
a particular kind of word, or use such a word fregquently, it can pay off in

convenience, efficiency, and elegance, to name and characterize Lhose properlies

‘that make it unique,.

microFORTH Technical Manual Page 90

4.0 YOCABULARIES

S50 far we havce considered the FORTH dictionary as a single thrcaded list of

definitions of various types. Actually, the dictionary is branched from a central

"trunk"” and sceveral subsidiary vocabularies may be linked into this trunk.
Multiple vocabularies provide several advantages:

1. In a complex application, dictionary search time is reduced
substantially. This is mainly significant in reducing the time

required for loading.

2. Security is enhanced by denying access to sensitive commands by
isolating them in separate vocabularies., The vocabulary name acts as

a key, and may be kept secret.

3. Similar operations in parallel portions of an application may be
given the same name, without internal confusion. Judicious use of

this capability may make complicated applications much easier for a

user to learn.

As you might expect, FORTH is the name of the “trunk" vocabulary. All other

vocabularies are chained to FORTH, that is, after a vocabulary search is exhausted,

FORTH will be searched starting at its most recent definition,

Two other vocabularies are defined in the basic system: ASSEMBLER contains all

assembler instruction mnemoniecs and other assembler directives, and EDITOR contains

commands to the text editor,

microFFORTH Technical Manual Page 91

The use of the name of a vocabulary sets the variable CONTEXT to the head of the
sub-vocabulary that will begin a dictionary search. CURRENT specifies Lhe

vocabularies inte which new definitiona will be linked.

The word used to define a new vocabulary is VOCABULARY.

VOCABULARY TESTING

defines a new vocabulary named TESTING., TESTING itself is defined in the vocabulary
to which CURRENT was set when it was defined. To enter definitions in this new

vocabulary, you need Lo say,

TESTING DEFINITIONS

Here, TESTING sct CONTEXT to TESTING, while DEFINITIONS set CURRENT to CONTEXT,

Remember, CONTEXT specifies whiech voeabulary you are searching, and CURRENT
specifies which vocabulary new definitions wWill be put in.

Some defining words affect CONTEXT:

CODE sets CONTEXT to ASSEMELER
: sets CONTEXT to CURRENT

This has certaln consequences which may not he immediately obvicus. Suppose you

say:

TESTLING DEFINLTIONS 0 VARLABLE 3
CoDE CHECK 50 LDA L.,

Alas, since CODE set CONTEXT to ASSEMBLER and 8 was defined in TESTING, you have
referenced the ASSEMBLER S {stack pointer) rather than the VARIABLE in TESTING. You
have to obtain the address of TES3TING's S before entering ASSEMBLER:

TESTING DEFINITIONS O VARYABLE S S
CODbE CHECK 0 LDA ...

Here you fetched the address of S before changing vocabularies, That address is

microl'ORTH Technical Manual Page 92

waiting on the stack for LDA.

As CODE leaves you in ASSEMBLER, you will not be able to find any word in TESTING,
(for instance, by typing it) after defining CHECK. You may either reset your
previous CONTEXT or else follow the code by a : definition (which will reset it

automatically). CONSTANT and other defining words don't change CONTEXT.

There is no requirement that vocabularies be contiguous in memory. In fact,
ASSEMBLER and early FORTH arc quitce interlaced. FORGET (which fo: xets all
dictionary entries subsequent to the one whose name follows FORGET), however, will
"forget" in a spalbial sens., Thug, i you i Lhe Jofiaitions of several

vocabularies, you must forget all of them at once. Consider:

VOCABULARY RED VOCABULARY BLUE

RED DEFINITIONS

BLUE DEFINITIONS

FORGET BLUE is incorrect and will prevent further dictionary searches. RED's
definitions have been discarded, but RED's pointer which initiates the secarch has

not been updated., On the other hand, FORGET RED will forget BLUE as well.

Ainy word (and all following words) may be forgotten, providing the CURRENT

T -

in which the word was defined. FORGET sets CONTEXT to CURRENT.

Yogcabulary is th

You can make a Vocabulary IMMEDIATE when you define it. For example,

VOCABULARY VECTOR IMMMEDTIATHE
VOCABULARY COMPLEX ITMMEDIATE

Then later you may define

microFORTH Technical Manual Page 93

: OPERATION VECTOR + COMPLEX # ;

which will compile only two words,

+ from the VECTOR vocabulary

and

¥ from the COMPLEX vocabulary

The vocabularies that are resident in standard microFORTH are diagrammed in Fig., 13,

The organization shown is logical rather than spatial. The circles show the actual

definition of the vocabulary, with the dashed lines indicating the linkage from the

def'inition to the head of the vocabulary referenced.

microFORTH Technical Hanual Page 9"

ASSEMBLER

EDITOR

\
P
\ ~ I
\ /! {
\ / /
\ / /
LY //
V -~
k
[N
(Y FORTH
Iy
! \
| \
\ N
\ S
N]
AY
\

®

Figure 73
Diagram of Vecabularies in microlrORTH

wicroFORTH Technical Manual Page 95

15.0 THE CROSS COMPILER

The cross compiler is best understood in terms of its differences from and

similarities to the operation of the normal resident compiler. For this reason it
would be well to delay reading this chapter until you have acquired a working

knowledge of Lhe normal compilation process by actual experience.

15.1 Explanation of Terms

Before proceeding too deeply wWe should establish a common understanding of some

often used terms.

15.1.1 Cross Compiling

By cross compil ing we mean the generation, on one system, of code destined
to be executed on another system. The destination CPU may be of a
different type than that of the development system, but within the context

of this manual it will be assumed to be always the same.

The function of the resident compiler is to add new definitions into the
development system, so Lhat they becomec immediately executable, cven
before the compilation process has come to rest., In contrast, under the
cross compiler, the entire application must be compiled and transferred to
its intended systew, before any portion of that application can be
executed, This corresponds to the meaning of the term "compilation" in
the context of conventional programming. On FORTH systems '"compilation"

has always implied an immediate, interactive process in which each word

microFORTH Technical Manual Page 46

compiled becomes an integral elemcnt of the development system itsclf,

There are three principal differences between couwpiling and cross

compliling:

1. The product of the cross compiler is built in virtual wnenory on
disk, allowing it to occupy locations in address space that might be
occupled by Lhe development syatem softwire., This is the principal

recason that the cross compiler's output cannot be executed until it

reaches its destination hardware.

2. The output of the cross compiler does not contain the names of the
words defined, nor the links that would allow the generated program
to search its dictionary at execute time. This is a significant
compression of the already compact definitions provided by the

resident compiler, on the order of 10 to 30%.

3. The output of the cross compiler does not contain the FORTH text
interpreter, resident compiler, disk and terminal support, or other
routines concerned with supporting an intcractive system, 1t is
instead suplied with a %12 bytc subset of the FORTH system composed

of the address interpreter and a vocabulary of essential words,

15.1.2 The Target System

under development will cventually reside. Within the cross compiler, the
word "Target" is applied to two differcnt but rclated entities: the Target
Dictionary, and the Target ¥Yocabulary., The Target Dictionary refers to
the virtual memory on disk into which the application is compiled, and to
the compiled program that resiﬁ?here. The Target Vocabulary is a formal

Vocabulary as described in Chapter 10,0 (VOCNBULARIES).

The Tarpget Vocabulary occupies development system dictionary RAM and

contains exccutable definitions. In fact all definitions are executable

in that they contain a code address {sec Lhe chapter "FORTH Dictionary

microFORTH Technical Manual Page Q7

Structure®}. The purpase of the entries in the Target Vocabulary is to

retain the name of cach word compiled into the Target Dictionary and its

locat ion in target memory. Tne word TARGET is the name of the Target

Vocabulary.

15.%1.3 The Host System

The host system is, of course, your development computer. Within the
cross compiler the word HOST is the name of the Host Vocabulary. The
Host Vocabulary contains the cross compiler ilself., It is distinct from

the FORTH Vocabulary for an important reason, The majority of the words

within the Host VYocabulary are redefinitions of words that occur in the

FORTH Vocabulary. The Host Vocabulary redefines such words as:
, 8 HERE VARIABLE

{and the entire assembler). In general those words which are used in
FORTH to describe, build, or modify a definition, must be redefined in

HOST to perform an analogous function for the Target Dictionary,

The Host Vocabulary exists separate from FORTH in order to maintain the
accessability of normal FORTH words during the compilation of the cross
conmpiler, Visualize for a momcnt the process of building the cross
compiler. fs morc and morc compiling and defining words arce given new
interpretations {thus burying their previous definitions) it occasionally
becomes necessary to slip beneath the new meaning of a word and use the
older, resident compiler version in order to properly create some elcment
of the cress compiler. Thnis is the rcason that the word FORTH is
IMMEDIATE (see Section %.8). It may be used within a definition to effect

an imnediate context syitch back to the FORTH meaning of a word.

15.1.% The Bucleus

The heart of a cross compiled program is called the RNucleus. The Huclcus

containg the FORTH address intcrpreter and the definitions of a small but

microlFORTH Technical Manual Page 98

arucial set of words., The most important words will be thosc that support
literals, loops, and condibtional branches, Also included is the code to
support the dcfinitions of CONSTANYT, USER, VARLABLE, :, ; and DOLS>,
Several other words are included but the list will vary somewhat between
different computers in the interest of limiting thc size of the Nucleus to
512 bytes on all machines. The words in the following list, however, can

alvays be assumed Lo be present:

0 ! ce ct
+! EXECUTE U* u/

+ - AND MOVE
<R R> 1 0<
0=

15.1.5 Defining vs Compiling

Many times in the folleowing chapters reference will be made to the terms
"defining words" and "compiling words". These terms are not
interchangable, They are meant to refer to two distinct, and probably
mutua lly exclusive, dictionary consgtruction activitlies that a word might
be engaged in. The terms are distinguished by the portion of definition

construction for which they are responsible,

The domain of a defining word includes the name field, link field, and
code address of a definition (ecollectively referred to as the “head"). 1n
many cases, a defining word will have responsibility for initializing the
parameter field, as in the case of CONSTANT or VOCABULARY. The lowest
level defining words are CREATE, ;CODE and DOES>. Any definition whieh
refers to a defining word is itself a defining word, Defining words are
not IMMEDIATE, A fairly complete list of words would include {aside Trom

the ASSEMBLER mnemonic defining words):

0]

CREATE CONSTAHT VARIABLE CVARTABLE
USER : <BUILDS DOES>
M54 VOCABULARY CODE ; CODE THMEDLATH

microFORTH Techniecal Manual Page 99

The dowmain of a compiling word is anywhere within Lhe paramecter field of a

colon definition. 1ln order to effect such a definition a compiling word

must be IMMEDLIATE. The majority of compiling words make reference to the

word \ (sec the "Compiler" chapter) but that is not a requirement. The
primary distinguishing feature of a compiling word is that it will always
be IMMEDIATE. The converse is also true; if a word is 1MMEDIATE it must
also be a compiling word. (It will certainly never be compiled.) Somc
vords that are technleally compiling words are also usable outside of a

definition. FOHTH, BEGIN and (are such words.

It was statced carlier that compiling and defining words were mutually
exclugive. An apparent exception is ;CODE. ;CODE was previously dcclared
to be a defining word, 1t is also obvious from its definition (in screen
4} that it is a compiling word, On closer inspection however, it can be
seen that there are actually tyo ;CODE words, The older, defining word is

compiled into a definition by the latler, compiling version.

In a typical FORTH application, the user will not define any compiling
vords of his own, and only a few definineg words, it any. The cross
compiler has been constructed, as much as possible, to make the cross
compilat ion of all other words tranaparent to the user. Techniques for
handling user written compiling words and defining words will be discussed

in the chapter, "Extending the Cross Compiler .,V

15.2 Organizing an Application to be Cross Compiled

In any FORTH application it is important to organive the loading of your definitions
in a single scrcen. A "load screcen' is a screen whose primary function is loading
each application text screen in the desired compiling sequence. It should have few
additional responsibilitics. Sereen 3 on your system disk is such a screen.

(Screen 3, however, does ineclude more definitions than a cross compiler load screen

would.)
The use of a load scereen i3 good programming practice, 1t organizes into one
visible spol all of the blocks to be loaded for an application. Thls concentrates

and segrcpgates the load function into a small area, away from the actual

microFORTH Technical Manual Page 100

definitions.

When the application has been tested and is ready to be cross compiled, you must

provide a separate load screcen to load it under the cross compiler, This is

required because the environment of thc cross compiler is different from that of the
resident compiler. It is the task of this separate load screen to isolate the

actual program text from tnese differences.

The first responsibility of this load screen is to configure the cross compiler for
the kind of output to be generated, Refer to the screen titled "CROSS TEST." Line

one will contain the following scquence:
NUCLEUS LOAD PROM LOAD COLON LOAD

The words NUCLEUS PROM and COLON name portions of the cross compiler that you must
cxplicitly select in the load screen beecause they are optional. The words SYMBOLS

and RAM name screens that provide other modes of cross compiling,

The two secreens NUCLEUS and SYMBOLS are mutually execlusive; only one of them is

loaded in any compile. You must load one of them and it must be the first thing

done in the load screen., Their purpose is to empty the TARGET Vocabulary and

Dictionary in preparation for a ncw compile, as follous:

1. Re-initialize the Target Vocabulary to an emply state and FORGET
all definitions after the overlay point named COMPUTLR.

Erase the Target Dictionary to zeros using the word CLEAR.

N

(O8]

Reset the Target Dictionary pointer to zero.
4, Define the locations of the words contaiuned in the Nucleus.

In addition, the NUCLEUS sercen will transfer a copy of the precompiled Nucleus into
the Target Dictionary beginning at location zero. You will more typically load
NUCLEUS rather than SYMBOLS. SYMBOLS might be used to save compile Lime whenever
the Nucleus already exists in PROM and need nol be included as part of each new

application,

microFORTH Technical Hanual Page 101

The words PROM and RAM also name two screens which are mutually cxclusive. One of
them must be selected and loaded immediately after the loading of either NUCLEUS or
SYHMBOLS. Their purpose is to create the cross compiler versions of the defining
words such as CONSTANT and VARIABLE. 1If the application is to be executed within
PROM memory, VARIABLE cannot be defined in the standard manner. Specifically, its
value cannot be contained in the parameter field because that would not allow it to
be changed, Instead it is compiled as a constant, whose value is the location in
RAM memory where space is allocated for the value. This mode of defining VARIABLE
(and CVARIABLE) is selected by PROM LOAD. If RAM LOAD is specified instecad,
VARIABLE and CVARIABLE will be defined as in the resident compiler.

COLON LOAD complctes the cross compiler by redefining : and ; along with several
other compiling words., From this point on all words defined by the new : will be
compiled into the Target Dictionary. The old meaning of : is available by using the

word H: (i.e., Host's :).

microFORTH Technical Manual Pagc 102

16.0 THE CROSS COMPILER ENVIRONMENT

A diagram of the dictionary structure of the cross compiler is shown in Fig. 10,

It illustrates the organization of the Vocabularies within the cross compiler and
their general contents. The organization is shown in a logical rather than spatial
nmanner . The Vocabulary names are shown on dashed arrows that connect the names to
the tops of the Vocabularies they contirol. The Vocabularies EDITOR and ASSEMBLER
are not shown. Tne short Vocabulary STUB is used solely in the generation of the

cross assembler and does not come into play later.

The contents of TARGET are shown to map onto the contents of the Target Dictionary,
As stated earlier, the Target Vocabulary contains the names and locations of words
whose definitions are built in the Target Dictionary. TARGET is shown separated
from the other Vocabularies. This is because TARGET is a "sealed" Vocabulary. Any

search begun in TARGET will terminate there and will not continue into any other

Vocabularies. 7This enables the cross compiler to gcnerate an error message upon any

attempt to reference an application word that has not yet been defined, even though

a word by the same name might occur in either HOST or FORTH.

There are two overlay points shown in the illustration. One is marked by the
definition : TASK ; in FORTH, and the other by : COMPUTER ; in HOST. TASK, as
always, is used to mark the top of the FORTH Vocabulary, Because TASK is defined
in FORTH, and because the cross compiler has normally specified HOST DEFINIT1ONS,

the required sequence for discarding the cross compiler is

FORTH DEFINITIONS FORGET TASK : TASK

The overlay point marked by COMPUTER represents the top of vthe

configuration--independent portion of the cross compiler. Cross compiling for ROM

microlORTH Technical Manual Page 103
L |
-7 el names;
/ » & User's I
, ' defining i
; . _words |
I ! — T |
User's defining words : ~ _:::4H
: Nucteus S
i
' -
Defining words ; ~—
1 S~
I ' _“— N
2 COMPUTER 3 -l —wp il NueT e i
; & T~ T e
ASSEMBLER / ! .
¢ ' Tt
! t
f '
! '
f‘ '
;]
] 1
] '
z !
£ i

CONTEXT

STUB
Iy CURRENT
;§§ HOST /
P et -
. . TASK

“e b FORTH

Host Dictionary {RAM)

-
.

CROSS COMPILER DICTIGNARY STRUCTURL
{(not to scale)
Normally CONTEXT = CURRENT+ HOST

Figure 14

Target Dictionary (Disk)

microFORTH Technical Manual Page 104

or RAM for instance, is controlled by wvords defined after COMPUTER. There is also a
utility that can be loaded at Lhis point (OUTPUT L,OAD, described in the chapler,

"The Cross Compiling Process"},

The illustration shows that tho TARGET Vocabulary is split (physically) across
COMPUTER. fThis imposes a special constraint on the ability tc FORGET COMPUTER.
TARGET must be emptied of all entircs defilned past COMPUTER before COMPUTER is
discarded from HOST. The phrase Lo achieve this appears at the beginning of each of
screens called NUCLEUS, SYMBOLS and OUTPUT. 1t is based on the knowledge that there
is only one entry in TARGET that is beneath COMPUTER, and that this definition 1is
located immediately beyond the definition of TARGET itself.

The following scctions will discuss cach of the major classes of definitions

supported by the cross compiler. Refer to Figure 15 as necessary.

16 .1 Colon Definitions

The Target Vocabulary cxists primarily to support the cross compiler in the
generation of colon definitions. Recall that the parameter field of a colon
definition is a list of addresses, each of which points to a predefined word. For a
resident compilation this list is built by the interpreter whenever the compile flag
STATE is set. For the cross compiler this function is performed by the word
COMPILE, COMPILE takes over input scanning from the interpreter starting from the
first word in the definition until the ; is reached at the end, Unlike the
interpreter, however, COMPILE does not examine each word's precedence bit to
determine if it should be compiled. Instead, all words are execuled. The only

requirement is that each word occur in TARGET.

The compiling words IF, ELSE, THEN, DO, LOOP, +0LOOP, BEGIN and END have their
ordinary definitions in TARGET. Most other words are placed there by the defining

word EMPLACE. For example, during NUCLEUS LOAD, the word C! is enterad in TARGET by
0098 EMPLACE C!

(The number 0098 will vary for differenl computers because it is the addrcss of the

parameter field of C! in the Nucleus.,) Now when C! is executed by COMPILE, the

microFORTH Technical Manual Page 109

address 0098 will be decremented Ly 2 (giving the address of the code address of Cl)

and placed al the top of the Target Dictionary., Thus the effect of executing a word

defined by EMPLACE is to cross compile the corresponding vword on the target systen.

The defining words of the cross compiler (CONSTANT, VARIABLE, CVARIABLE, CODE, TABLE

and i) also invoke EMPLACE., For example, if you cross compile:

10 CVARIABLE BASE

then BASE has been EMPLACEd in TARGET. 1f you then cross compile

HEX 16 BASE C!

then COMPILE executes BASE and C! by compiling the corrseponding addresses in the
Targel Dictionary. By the way, HEX is iteslf EMPLACEd in TARGET Ly this definition,

so that HEX may be cross compiled in subsequent ceclon defiaitions.

The number 16 in the definition of HEX is not found in TARGET, but instead is

recognized as a valid number, and is compiled as an 8-bit literal. COMPILE can

also compile 16-bit literals as needed.

The word ; is in TARGET, and its execution compiles a reference to ;S5' (the code

routine for a subroutine exit) and then exits from COMPILE.

16.2 Pefipning Yords

Each of the important defining words is provided in the cross compiler, Some arc
not, however, and others are different in small ways that require clarification. 1In
addition there are some defining words in the cross compiler that have no
counterparts in the resident compiler. Such words may need to be provided by the
user for the resident compiler during the testing phase, The following sections
will give a brief description of each of the words that are provided, O0f course,

is a defining word, but it has already been covered.

microFORTH Techinical Manual Page 106

16.2.1 VARIABLE and CYARIABLE

These twWo words are identical in all respects except for the amount of RAM
memory wnich Lhey reserve for containing Lheir values, They are of
special interest because it is arcund them that the major diffocrence
between PROM and RAM compiles revolve., VWhen used in a resident
compilation they create a new dictionary entry and install an initial
value from the stack into the variable's parameter field. When the
resident definition is executed it pushes the address of its parameter

field onto the stack. To store data into such a variable you must be able

te modify the parameter field.

When cross compiling for RAM the technique is the same as for a resident
compilation. The parameter field is initialized with the given value, and
the parameter field address is pushed on the stack when the variable is
executed on the target system. This method of defining variables is Lhe
most econcmical in terms of mcmory in that no pointer is required to

locate the data. The data location is a functicon of the location of the

definition itself,

For an applicat ion to exccute in PROM, variables cannot be defincd in this

manner. The paramcter field is not a writable locaticn. FEach variable

must be defined as a constant whose value is a RAM address.

fis each PROM variable is defined it must be allocated sufficicnt space in
RAM for its intendcd use. This allocation is provided through a separate
dictionary pointer named N, N is a HOST variable that points te the next
available RAM location., This leocation is rcturned by the word THERE.
Space is allocated by the word RES, W RES will rescrve four bytes of RAM
by incrementing N by four, This is analogous to incrementing H in the

rcesident compiler,

It is important to keep in wmwind the difference between PROM and RAM
variables whenever writing code that is to be compiled cither way. 'This
turns out Lo be mosl of the time. You compile into resident RAM for

testing, and then <ross compile for PROM. The differences between the

microFORTH Technical Mannal Page 107

PROM and BAM environments can be characterized as follows:

1. The words N, THERE, and RE3 are only defined for a PROM conpile.

In your resident compile load screen you might define:

N b : THERE HERE ; : RES N 41 ;

2. A PROM variable is not Initialized, The initial valuc given in

its definition is discarded.

3. PROM variables occupy conltiguous RAM addresses, unlike RAM
variables, whose values are separated by the code addresses of their

own dcfinitions,

A cross compiled variable is not executable in the normal sense. ‘1o find
the address of a variable compiled for RAM named LAST you would use
LAST. 1If the variable was compiled for PROM you would have to use ' LAST
é. Because these two forms are not compatible, special effort has been
taken with cross compiled variables, Each variable name is defined twice:!
once by EMPLACE for colon definitions, and oncc in HOST asg a resident
CONSTANT . By simply naming the variable outside a definition you cxecute
the HOST CONSTANT. The value of the CONSTANT is the target address of the

variable,.

16.2.2 TABLY

TABLE is a defining word that has been devised primarily for PROM cross

compiles, although it has also been defined for RAM cross compilation.

Tts purpose is Lo name tLhe starting address of a table of constants. For

cxample,

TABLE TENS 1, 10 , 100 , 1000 , 10000 ,

will define a table of powers of ten. lLnvoking TENS in the targct system
Wwill place the starting address of the table on the stack. Unlike
VARIABLE, TABLE does not reserve any space for ita parameter f[ield.

Instead, the values in the table must be explicitly set by , or C,. Hote

microFORTH Technical Manual Page 108

that the tabulated items are placed in the dictionary, which is in

recad--only memory in a PROM cross compilation. (To allocate an array of

bytes in RAM, use RES as discussed under "YARIABLE and CVARIABLE" above.)

For a resident compile define TABLE as follows:

¢ O TABLIE O VARIABLE -2 0ol

16.2.3 CONSTANT

Conatants exist and function in the normal wanner when execuled on the

target systewm., However, their names are nol executable in Lhe normal
sense during cross compilation to provide their values. To determine the
value ol a CONSTANT named NAME in assembler code, for instance, use ' NAME

. This phase will work for either a resident or a cross compile.

16.2.4 USER

User variables were discussed briefly in Lhe Chapter 3.0. You were
caut ioncd there against defining any of your own so as not to interfere
with the systems assignments. You can provide your own definition for

USER that will build words that refer to an area separate from that used

by the system as follows:

0 VARIABLE AREA 254 H «+! AREA VARIABLE U
USER <BUILDS C, ROES> C& U & +

Alternatively USER could be deflincd as

USER CVAR1IABLE ;CODE
followed by code that adds the byle addresscd by W to the contenls of U
and pushes the result onto the stack. Either ol these forms 2ould be

provided in the resident compiler load acreen to permit testing,

There are several limitations on user variableas:

microFORTH Techniecal Manual Page 109

1. The size of a uscr area cannot exceed 250 bytes,

2. The user area can 2ross a modulo 2506 byte page only on compubters
with 16-bit ADD instructions, At the moment this is true only for

the BO80A and derivatives.

3, The target user pointer (U) can only be changed by assembler code,
This is because U is not defined as a VARIABLE {when it is in RAM)
but. ratheor by an EQU (refer to the next section "EQU and LABEL").
Likewise if U is a register {as on the COSMAC) it must be loaded by

machine code,

Although we do not presume to tell you how user variables ought to be

used, a study of Lhe following list of properties should suggest several

possibilities.

1. For PROM compiles, a USER variable occupics only 3 bytes as
compared to 4 for VARIABLE or CVARIABLE.

2. The loeation of t{he user area need not be known at compile time.

3. The loecation of the user area need not remain fixed at cxecute

time,

4. USER provides an explicit way to fix the relative positions of a

set of eontiguous variables,

16.2.5 Code Definitions

The defining word CODE is uscd, as always, to begin a code definition, 1t
places a code field in the Target Dictionary that points one word ahead
to the parameter field, and EMPLACE an entry into the Target Vocabulary
that also points Lo this paramecter field. This CODE differs in character
from Lhe resident compiler word in that it performs no context switching.

Ty assumes that CONTEXYT already points to HOST and does not change it.

microFORTH Technical Manunl Page 110

This is because the cross assembler is defined within HOST. 1L does not

occupy a Vocabulary of its owun,

This is an important point to stress. With all of the asseudler redefined
in HOST, any word in the assembler having the same namc as a FORTH word
will cause the FORTH meaning to be buried {(unless you explicitly awitch
back to FORTH)., Although the actual words buried will vary betwecn
systems having dif ferent assembler wmnemonics, the words 1F, ELSE, THEN,
BEGLN and END will always be among them, Later, as you will see in the
chapter on extending the Cross Compiler, it will be important to remember
this, Tnhe primary implication of this separate Host assembler is that you

may cross-compile for any target processor.

Hithin a CODE definition thc process of assembly procedes in much the sane
manner as for Lhe normal assembler: number and register values are placed
on the stack, mode words set whatever flags their function rcquires, and
mnemonics generate instruction code. Each word desceribing this process is
found and exccuted in turn. Arithmetic and stack managemcnt words will be
found in FORTH aa usual., The main difference is that the generated

instructions are placed in tLhe Targel Dictionary on disk.

Uccasional ly it is necessary to obtain the location of a variable or the
value of a constant to use it within a CODE definition. 1n the resident
assembler you would nead only to refer to its name which would be executed
to provide the desired value, Within ceross assembled code, however, such
names would not even be found and even s0 their execution would not
provide the desired result because they are defined by EHPLACE, For this
reason the word ' is redefined to search TARGET for the word fol lowing,
and to return on the stack the location of its parameter field in the
Target Dictionary, After searching TARGET, ' returns both CONTEXT and
CURHENT to HOST.

To illustrate how ' would be used to provide the intended value of a name,

assume the following words to have becn defined Lhus:

12 CONSTANT CON 0 VARIABLE VAR 12 USER USE
CODE LINST ... : DEF ; TABLE TBL

inicroFORTH Technical Manual Page 111

The evaluation of eaech of these words within either the resident or cross

compiler/assembler is given below:

Resident Cross

CON ' CON @

VAR VAR

TBL ' TBL

USE ' USE C@ origin +
t INST ' INST

' DEF ' DEF

(The word "Yorigin" is used above to represent the address of the base of the uscr
area.) The important thing to note in the above table is that all of the forms used
in the "Cross" column will in fact produce results identical to the corresponding
forms in the "Resident" column even if those forms were interprected by the resident

interpreter., Clearly the cross compile form should be use

from the onset of coding

Note also that to evaluate the location of a cross compiler VARIABLE (or CVARIABLE)
the word ' is not required. The name of the variable is sufficient. Special
effort is taken in defining such words. At the same time that an EMPLACE entry is
placed in TARGET, a normal CONSTANT definition for the same name is entered into
HOST. The value of the constant is the location assigned to the variable. Thus
each VARIABLE or CVARIABLE definition requires twice the host memory of any other

cross compiled word.

16.2.6 EQU and LABE],

The defining words EQU and LABEL are unique to the cross compiler
environment, Ior many of their uses ngo cquivalent form exists for the
resident compiler. They do not wake entries in either the Targel
Diclionary or the Targel Vocabulary. What they do is to cnter CONSTANT
definitions into the Host Vocabulary, Such definitions then are

executable but not compilable, hence they can be referred to only in

microFORTH Technical Manual Page 112

asscmbler code or HOST interpreter.

EQU defines a named constant. 1Tt "equates" a value to a symbol. The

definition

6 EQU PRINT

might be used to declare a printer port address to be 6 and to name that

port PRINT.

Such a definition costs nothing in Target Dictionary space bulb can
increase readability of code as well as facilitate configuration changes.
For the resident compiler you can define EQU to be CONSTANT. Remember
that a resident EQU definition will occupy real dictionary space at
whatever point it is defined, (i.e. don't define an EQU in the middle of a

CODE definition).

LABEL is defined as HERE EQU, where the HERE refers to current top of the
Target Dictionary. LABEL has no possible counterpart for the resident
compiler because the act of producing the definitions will disturb the
value of HERE (as well as that portion of dictionary being labeled). You
can either overlook this incowpatibility, working around it for the
resident compiler, or else restrict your use of LABEL to entirely cross

assembled applications, as in a boot PROM.

microFORTH Technical Manual Page 113

17.0 THE CROSS COMPLLING PROCESS

17.1 Procedure

When your application has been coded and testcd to your satisfaction using normal
resident compilation you will want to begin cross compiling it. First generate a
cross compile load screen as outlined in the Cross Compiler chapter. With that done

you are ready to begin A cross compilation.

Before actually beginning any cross compile you must first insert a spare disk into
the second drive. This disk will receive the generated corc image object program
(i.e. the Target Dictionary) in screens 249 thru 249 (490 through 499 relative to
drive 0). No other part of cither disk will be modified by the cross compiler,
These 10 screens represent 10K bytes of dicticnary. This should be more than enough

for all but the most enormous of applications,

To load the cross compiler type CROSS LOAD and then load your application's load
screen. As your application is loaded, Lhe cross compiler will generate a free-form
load map of each word as it is compiled., FEach individual load command will begin a

new line with the screen number (in hex) that is being loaded,

If the compile should stop on an unknown word jt will probably be due to one of two

errors. Lither you have used a word known to Lhe development system that is not an
element of this Nucleus, or your cross compile load screen differs from the resident
compile load screen in providing for that word to be defined beforc it is needed.

In either case you must return to the EDITOR and correct the omission.

If your EDITOR is resident simply type EDITOR, list Lhe screen in crror, and make

A

b

microFORTH Technical Manual Page 114

your correciions. To return to the cross compiler type FORTH HOST and then load
your load screen once more. Reloading CROSS is not required. If on the other hand
your EDITOR is non-resident (as on COSMAC system) you must type EDIT f.OAD and then
make your correcctions as above. Loading thce EDITOR will cause the cross compiler to
be discarded. You must therefore type CROSS LOAD again bLefore beginning another

compile.

When your compilation is complete you will be left in HOST DEFINLITIONS. What this
means is that you are in the wrong Vocabulary to FORGET TASK. The correct sequence
for deleting the cross compiler is:

FORTH DEFINITIONS FORGET TASK : TASK

You may want to include the phrase FORTH DEFINITIONS at the end of your load screen,

17.2 The Cross Compiler Map

Figure 15 shows an exaumple of the free form map produced by a cross compile. The
map is a2 result of redefining the words LOAD and CR, and the action of the word LOG
that is nested within all cross compile defining words. LOAD is redefined to issue
a CR and then type the screen number before loading it. (Note that the word . is
redefined to output always in hex.) CR is then redefined to perforia a CR and a

SPACE. CR should be edited at an appropriate point (not inside a definition) within

any screen whose output exeeceds one line, causing subsequent lines to be indented.

The majority of the output is produced by LOG, LOG will output the parameter field
location (or symbol value for EQU definitions) and then the name of each word as its
definition it begins. For PROM compiled variables the RAM address is output after
tne name, followed by an e¢xtra space to separate it from the next address. If you
are not working from a hard copy terminal you may wish to produce a compiler map on
the hard copy unit. To force all cross compiler output to hard copy on systems with
separate printing terminals, simply type PRINTER LOAD before typing CROSS LOAD.
(Note: PRINTER LOAD is not supplied with all systems.)

microFORTH Technical Manual Page 115

78
45
48 3C00 R 3C02 U 4C WHPUSH 41 HPUSH 42 MNEXT 48 WNEXT
9
E2 '"VARIABLE' ET7 'CONSTANT' FC 'USER' FC 'DOES>' IQOF ':°
49
43
44 23C Ce& 245 < 24D /7MED 255 MAX
76 3Cl2 @P@RT 3ClF !'PART 275 RAM
7B 291 +BIT 2A4 +DIGIT 2B7 BIT 204 DIGIT 21 NUMBER
7¢ 2FB -BIT 31€¢ -DIGIT 333 !BIT 348 !'DIGIT 350k BCL 366 REV 376 DISPLAY
7D 394 1MS 3AS5 MS 3B3 . 1SEC 3C4 PURTS
20 3E9 Ex
7E 40E SIDE 3C02 4al2 !SIDE 42] LEFT 42a RIGHT 43F DUPLICATEDL 451 RESULT
80 466 BOTH 476 PASS A7F FAIL 488 CLEAR 49b PRLESSURIZE 4A1 ENADLE
4A7 NEWP@RT 4AD BLACK 413 ADVANCE 4BE9 C@NVERT 4BF LABELS
4C5 STOF 4CkE MCLR 4nl CLAMSHELL
7F 4E4 AUTY 4EA BLOOD 4F0 DIALYSNATE 4F€ START 4FC RETEST 502 DZNE
508 INHIBIT SOE NORM 514 READY 5!A ATHl 51E A/L 529 PRESSURE
546 SENSITIVITY 54C TEST-TIME 552 DELAY 558 SCERIAL 55C L@T
82 560 CHAPR 57E SPACE 587 SPACES £95 ChR 5A8 CR
531 DIG 5BC PRINT 5CC REJECT BEE S/N 3C03 5F2 LABEL
81 62F C# 3C05 633 0COL €3E CHAR ¢€€C SPACE- €6F SPACES
67D CE 698 L@G 6n8 T/N 3C0¢ €AC SERINL# 6B TEST#H
83 6D1 FAILED 6:3 TLST 742 LEAK 7C9

Figure 15

microFORTH Technical Manual Page 116

17.3 Lore lmage Output

The core image arca on disk contains the output of your finished cross compile.
What remains is to transfer this program in some form to your target systcm memory.
Lf the program must load into RAM it is the user's responsibility to determine
formatling requirements based on the boot media and boot routine to be used, and to
provide appropriate custom output routines. Outputting the program for PROM or ROM

memory is easier to consider in the general case,

There are in general two separale approaches to PROM programming, The most direct
is Lo outpult the generated program into the PROMs through a PROM programming
interface attached to the development system. Software to drive such interfaces is
available for systems that have them. The operation of such software may vary

between systems and is therefore documented separately when delivered.

Another way to program PROMs involves outputting the program to some media in a
format appropriate to some external programming device. This is most often paper

tape. A paper tape formatting routine is provided as standard and can be operated

by the following procedure.

1. Before loading the cross compiler you must first provide access to
a punch device, 1f your terminal is a TTY then skip this step; you
already have such access. 1If you have a TTY as a8 hard copy device
then load the PRINTER screen as described earlier (Section 17.2). If
you have a high speed punch drive then load its software just as you
would PRINTER, before doing a CROSS [LOAD. The important thing is to
have ECHO so defined as to output a single character Lo a punch

device,

2, Type CROSS LOAD and then load your application, If the
application has alrcady been compiled and is in the Targct Diclionary
you need not recompile it., If you have just finished a compile and

have not yet deleted the cross compiler you need not reload it.

3. Type OUTPUT LOAD. This loads Lhe corc-image output word PROMS and

leaves you in hexadecimal.

microFORTH Technical : wual Page 117

I, If the size of your PROMs is not 512 bytes you must change the

value of the variable SIZE. For 1K PROMS type:

400 SIZE H!

5. If the punch device is not the console device then bring it up and

online now. If the punch device is a console TTY then do not enable

the punch unit until after executing step 6.

6. Type:

start-addr {ffproms PROMS
wnere "start-addr" is the first location in the Target Dictionary to
begin punching, and Y"#proms" is the number of PROMs that will be
needed to contain the entire program. If your punch unit is a
console TTY then enable the punch unit just after the carriage return

for the above command, while the leader is being output.

The word PROMS will output 200 zcharacters of blank leader followed by "#proms"

records of "S1ZE" bytes each and then 203 characters of blank trailer. BEach record
consists of a sentinel character of all ones followed by "SJZE" bytes of program in
binary format and then 100 null characters for record separation. Most PROM

programmers are capable of accepting such a format.

17.% Program Dumps

At some point in the cross compilation cycle you may wish Lo take a hex dump of the
Target Dictionary, either to verify Lhe corrcet compilation of some application
word, or to provide a final hard copy record of the contents of the PROMs. 'The word
DUMP is defined in the OUTPUT screen along with PROMS., You wmust load it exactly as
you would to punch a PROM tape although providing for hard copy is optional
depending on your needs. You then use it just as you would use the resident DUMP,

that is,

start-addr length DUMP,

microFORTH Technical Manual Page 118

17.5 Relocating and Expanding the Target Dictionary

The disk address of the start of the Target Dictionary is controlled by the value of

the constant NEW of screen CROSS. 1ts value is a hexadecimal block address (not a

sereen number). If you have the PROM programming software, it will contain a

definition of NEW, which should be the saue.

The size of the Targel Dictionary is assumed in three places: the MIN functions in
ADRS on of screen CROSS, the loop limit for CLEAR of the screen titled "TARGET
VOCABULARY," and the ORG of screen QUTPUT, Reloeating the Target Dictionary should

not be undertaken lightly, 1t should be moved only in case of a drive failure or an

extremely large application.

microbORTH Technical Manual Page 119

18.0 EXTENDING THE CROSS COMPILER

Just as for a resident compilation, you can extend the capabilities of the cross

compiler by adding your own compiling or defining words. For thc most part such
additions can be defined just as they would be for the resident cowpiler (see
Chapter 13.0 and Section 5.8), even to the point where the same definition could be

used by either environment. Using the same definition in both environments is very

desirable from the standpoint of reliability.

The meanings of many words used in compiling and defining words however are just a
little different under the cross compiler, Further confusion is added by being able
to use words from cither of two Vocabularies: FORTH or HOST. Finally there are some

functions which probably cannot be defined in a manner that is transparent to the

type of compiler,

18.1 Defining Hords

As an illustration lets consider a definition and usc of ARRAY as it might occur in

a resident compilation.

ARRAY 0 CYARIABLE 1 < DUP H +! HERE SWAP ERASE ;
20 ARRAY INPUTS

The purpose of ARRAY is to define a named region of memory of some specified byte
length and to initialize that region to zeros. Let's explore how to define such a
word for a cross compiled application. Assume, for the sake of argument, that the

cross compilation is destined for RAM.

microFORTH Technical Manual Page 120

The first problecm encountered in trying to use this same definition for the cross
compiler is that the : used is the wrong one. The ¢ross compiler : will try to
define ARRAY as an application word and enter it into Lhe Target Dictionary. 1In
fact the intent here is to define ARRAY within HOST as a normal resident definition
80 that it may be used during the compilation to make new target words. To do this
you must define ARRAY by means of the gld : that has been redefined as tH: for

safekeeping. Then, for compatibility, define H: in your resident load screen as

H: may now be used to add definitions to the Host Vocabulary,

The second problem is unique to thec 8080 cross compiler. The word H is the name of
an 8080 register defined by that name in both the assembler and cross assembler.
The resident assembler is in a separate Vocabulary so no conflict occurs there. The

cross compiler assembler i3 defined in HOST however, and precludes the use of H for
a diectionary pointer. The name DP is therefore used instead of H within the 3080

cross compiler, There are two possible solutions., Either define:

Dp H ;

in the resident load screen and use DP +! in ARRAY, or define:

ORG H ! ;

for the resident compile and use the phrase HERE + ORG in ARRAY. The use of QRG in

the preferred form because it is machine independent. (ORG is defined for the cross

compiler by CROSS LOAD.)

The last problem is that ERASE will eclear recsident memory, not Target Dictionary.

One solution is to make a definition for ERASE that can be added to the cross

compile load secreen,

H: ERASE OVER + SHWAP DO O I C! LOOP;

This is certainly not the only way to define ERASE, nor is it the best, 1t is given

herce solely because it introduces 2 new complication: its 1 is the wronz 1. 1f left

microFORTH Technical #anual Page 121

as is the 1 used would be Lhat of Lhe cross assembler. The IMMEDIATE word FORTH
must be added in front of the I to ensure finding the correct version. 1If left in
FORTH however, the C! used would be FORTH's, not the one that would store into the

Target Dictionary. The word HOST is made immediate for just such a casc. After

inserting HOST betwecen the I and C! the correct definitions would look like this

H: ERASE OVER + SWAP DO 0 FORTH 1 HOST C! LOOP ;

Should 2 reference Lo HOST be required within a scrcen common to either compiler,

you could define HOST for the resident compiler by

¢ HOST ASSEMBLER ; IMMEDIATE

Let!'s re~examine the final definition for ARRAY.

H: ARRAY 0 CVARLABLE 1 - DUP HERE + ORG HERE SWAP ERASK ;

If the phrases HERE + ORG and {IERE SWAP ERASE wcre merely exchanged, the definitions
would not only not work, it would probably crash the system the first time it was
used. This would come about because HOST versions of C! used in ERASE would store
into resident memory. Recall that the HOST words C0, C!, € and ! were all redefined
to select between target memory and real memory based upon cxamination of thelir
addresses. The assumption is that it is not reasonable in a FORTH program to rcfer
to locations outside the active dictionary. The rule employed in the cross compiler
for these four words can be stated thus:

11 addresses less or equal to the tarpget HERE and greate

equal to the valus of WO (the address assigned to the bottom of the corc

image area) will refer to Target Dictionary, all other addresses will

refer to Host uwemory.

By not including the new region inlo the getive Target Dictionary with the ORG until

after Lhe ERASE, the C! in KRASE must assume that the Host mcmory is being

referenaed.,

If the amount of accommodation and careful coding that was required for the single

word ARRAY seems exeessively severe, remember that it was chosen as an cxample in

microFORTH Technical Manual Page 122

order to illustrale as many problems as possible, If you intend to create your own
defining or compiling words for the cross compiler, vou must learn to recognize such
problem areas and work around them. Don't ignore Lhe possibility that many problems
might go away if the word were differently structured, The following example, for
instance, would work equally well in either environment, given only the resident

definition for :

H: ARRAY 0 CVARIABLE 1 DO 9O C, LOOP ;

In summary, the user wishing to implement his own defining words in a cross

compilation should keep the following points in mind:

1. Define your defining words with H: rather than

2. Remember that HOST C#, C!, 8, and | refer to Target Dictionary only in
the range from WO to HERE,

2. Be sure that the words used in the definition of the defining word are
coming from the correct Vocabulary (FORTH or HOST). FORTH is searched
after HOST, so this is not a problem unless you wish to use a FORTH word
that is defined differently in HOST. Note especially that the entire
assembler is in HOST. In addition to 1 (and, on 8080 systems, i), this

buries the FORTH compiling words IF, ELSE, THEN, BEGIN and END.

18,2 Compiling HWords

Unlike defining words, compiling words must be in the TARGET Vocabulary, so that
they can be found by COMPILE during cross compilation of colon definitions.
However, because compiling words must manipulate the stack during cross compilation,

they must be defined in terms of FORTH words suzch as SWAP and HOST Words such as C,.

To achieve this, place an H: definition of the compiling word in the c¢ross compile
load screen, and follow the definition by IMMEDIATE. In this way the compiling word
will be defined initially in HOSY, and then be transferred to TARGET by rearranging

Lhe dictionary links (this is the function of the HOST redefinition of IMMEDIATE),

microFORTH Technical Manual Page 123

For example, the defining word [discussed in Chapter 8.0 (OUTPUT) mieght be
defined

: COUNT DUP 1+ SHWAP C@ ;

{ I COUNT DUP 1+ R> + <R TYPE ;
HEX H: [N\ [5D WORD HERE C2 1+ HERE + ORG ; IMMEDIATE
DECIMAL

The first [defined must become part of the Target Dictionary, and consequently
has a : definition. Note that the user will have to supply his ouwn definition of

TYPE, for whatever device he intends his output.
The second [, on the other hand, is not intended to be exccuted on the Target
System, but rather during cross compilation, so it is defined by H: and made

IMMEDIATE.

(The word \ was described in Section 5.8.)

microfFORTH Technical Manual Page 124

19.0 A TYPICAL DEVELOPMENT CYCLIJ
Let us examine the cross compiler from the standpoint of how it would be used in a

typical development cycle. Although a development cyecle using FORTH remains quite

flexible, it will probably contain each of the following four major phases:

19.1 Research and Design

During this phase preliminary hardware-software tradeoffs are detcrmined, the 1/0
environment is outlined, and the major e¢lements of the software are blocked out.
Often the most productive way to outline the organization of the functional modules
is by actually coding a few of the highest level definitions in FORTH. Having done
this you will have divided up the functional responsibility into conceptual modules,
given descriptive names to those modules, and illuminated the flow of control
betwecn them. Since FORTH is interactive, you will want to use your terminal from
the earliest stages, editing definitions into blocks as you create them. This is
the technique known as "top-down design". You will be well on your way toward the

coding of your application.

The dividing line between design and coding is not clear cut, but can be thought of
as centering around that period where the desceription of some portion of the program
has reached a sufficient level of detail that it becomes practlical to try loading
it. That is when tne fun begins, for then you begin interacting direetly wilh your
application., This could also be a period of great frustration if you have no way to

communicate with special hardwarce which is nol available on thz development system,

microFORTH Technical Manual Page 125

1f your application performs little 1/0 and much computation such a situation is
tolerable. But if yours is a control-oriented problem you will be short circuting
perhaps the most powerful feature of FORTH should you be unable to communicate with

your target devices: that of truly interactive program development.

This interactive nature of FORTH is a function of the development system's rcsident
compiler and word interpreter, It is not available to a cross compiled program. In
this respect the cross compiler more closely parallels the conventional concept of a
compiler., Its outpul does not cxpect the support of the development system, nor can
it be executed until it is sufficiently complete that it can stand on its own (and
is transfered to the target system). When it does not work you must spend many
hours and muzh inductive logic trying to track the trouble to its source (if indeed
it has only a single source). This do-or-dic methodology has led to the
proliferation of debugging tools such as debug monitors, hardware traces, hardware

breakpoints, in-circuit emulators and logic analyzers,

The modular nature of FORTH programs and the accessibility of all levels of a
definition facilitates the testing of each word in a vocabulary before it is allowed
to wreak havoc upon half a dozen other words. Small, throw-away test cases become
unnecessary and large, untested programs cease to exist. The FORTH method assumes,
however, that when testing 1/0 code you have access to ports that are connected to
real devices. The easiest means to accomplish this is to assure bus compatability
between Lhe development and target systems. Then all that is necessary is to plug
the interface cards into the development computer and invoke your control words from

the terminal, using the resident compilation of your application. By this means you

may test the majority of your applicalion before ever cross compiling it.

If this is nolt possible you may nced a bus cxtender module to connecct the
development system's address, data and control) lines to the target system's bus.
This is usually referrcd to as In-Circuit Ewmulation, although the word is
occasionally used to mean much more, such as externally controllcd breakpoints or
traces. Lacking any such inter-system communication, your task becomes more
difficult and will almost cerlainly requirec several passes through the cross

compilation phase,.

microFORTH Technical Manual Page 126

19.3 Cross Compiling

During the cross compile phase the tested application is passed through Lhe cross
compiler to produce an object program on disk. The object program is then
transferred to a ROM or PROM. Care must be taken during this phase to avoid
introducing any new errors. One potential source is in the initialization code,.
Because the application must stand alone once cross compiled, the burden of system
initialization is placed on the user. This is not an especially difficult task but

it should be carefully desk checked to avoid any careless errors,

The following four functions must be included in the initialization code:

1. Load the stack pointer with address of the bottom of the stack,.
Remember that the stack will grow from hign to low memory and is
decremented before each push. 1t should therefore be set to the
highest address plus one of the region you wish to allocate for
parameter stack, As it is often difficult to determine the amount of
satack required, it is simplest to place the parameter stack
immediately beneath the return stack in high memory. Then it is free

to use all available memory.

2. Load the return stack pointer with the address of the bottom of
the return stack, usually the last RAM address plus one (the return
stack also grows from high to low memory.) Be sure to allow
suf ficient return stack for your needs. Remember that active DO
loops use 4 bytes of return stack and each active call to a colon
definition uses 2 bytes. The procedure for deternining return stack
requirements is tedious but straightforward. An alternate method is
to make a generous guess and then add a fudge factor. You should
count up all uses at least once to gain confidence in your ability to
estimate them., A return stack overflow is often fatal and always

damaging. 64 bytes is usually adequate.

3. Load the interpreter pointer with the address of the paramcter
field of th2 outermost definition in your application. This will be
the starting point for the interpreter. For this address to be Kknown

you must arrange for the initializalion code to be the last thing

microFORTH Technical HManual Page 127

compiled.

., Transfer control to NEXT just as you would at the end of a CODE

definition.

Other items to be initialized might include the User area base pointer (if you have
made use of USER defined variables) or certain regions of RAM Lhat may require known
initial states, 1In addition interupts may need to be enabled and programmable 1/0

ports will need to be programmed.

The last phase in developing a cross compiled application is to install the PROMs

into the target system and verify that the system functions to spccification.

Trouble at this stage could be due to one of the following reasons:

1. Failure of an untested definition. 1f it was not possible to test
cach definition from the hostL computer then extra effort is required

to desk check such definitions more thoroughly. 1f a CODE definition
may be at fault it could be traced in the target system with the use
of Lhe logic analyzer (if available). 1f a high level definition
might be at fault it should be broken up and tested in pieces,
substituting "stubs" in place of any untested words it may use. (A
stub is a word with a temporary definition, designed to approximate

or simulate the definition whieh will eventually replace it.)

2. Failure duc to cross compiling. Check the initialization code
thoroughly., Check the operation of any compiling or defining words
you may have added by jnspecting dunps of the objeel they producze,
In general, suspccl all dissimilarities in eross compiled and

resident compiled source screens. Reread the section "The Cross

Compiler Environment" and be sure you . iderstand the operational

differences between the resident and cross compiler.

microFORTH Technical Manual Page 128

3. Hardware failurc. Hardware problems are best solved with an

engineer, You might also find an oscilloscope, logic analyzer, or

in-circuit emulation uscful.

APPENDIX A
microPORTH IMPLEMENTATION on the RCA COSMAC (1802)

In this appendix wec assume that you understand and can use the hardware
functions of the COSMAC (described in manuals supplied by RCA). In addition,
you will nced to have worked through all previous chapters of this ‘T'echnical
Manual in order to be able to use the information given below.

ALL numbers ave given in hexadecimal unless otherwise specified.

1.1 DATA FORMAT

The main memory of the COSMAC is accessed in cight-bit bytes, microFORTH
provides several words for accessing bytes (CYARIABLE CZ C@ C! C).
For the most part, however, mieroFORTH handles data in two-byte pairs, called
words, Both the parameter stack and the return stack can be regarded as a
stack of words, each of which is sixteen bits wide. The high-order part of a
word is in the byte with the lower address (and this byte provides the word's
address).

1.2 REGISTER ALLOCATION

Certain registers have been reserved for system functions and arc customarily
referred to by their letter names, rather than by numbers:

Name Register Assignment
S D Data stack pointer
I C Next word to be executed
U 4 Address of user's memory
T 9 Temporary register
A A Auxilliary register
W 1B Current word being executed
P 3 Program counter
R E Return stack pointer

Registers 0, 1, and 2 are used by the hardwave for DMA and interrupt handling.

Registers 5 to 8 are not used by FORTII and arc available for the user to
assign. You may also use registers W, T, and A (9 - B) for scratch registers
when no code beginning word is used, or registers P, T, and A (3, A, 9) when a
code beginning word is used. (Code beginning words are desecribed in Section
1.5.) .

microlFORTII TECHNICAT, MANUAI, Page A - 2

1.3 ASSEMBLER MNEMONICS

The mnemonics of the various COSMAC operation codes have been defined as
words which, when executed, assemble the corresponding operation code at the
next location in the dietionary. As with other FORTH words, the operands of a
mnemonic (i.e., register numbers or names, immediate data, and modifiers) must
precede the mnemonie. For example, to select Register S as the index
register, you usc:

S SEX

This rule holds for all instructions that specify a register.

1.3.1 Modifiers ﬁMnemonics_

The word +C is used to direct the mnemonic which follows it to asscmble
an instruction that utilizes the carry flag (DF). This word may be used
before the following mnemonies:

ADD SM (subtraect with borrow) SD SHR SHL

The word # is used to direct the mnemonic which follows it to assemble
an inmediate instruction. ‘This may be used with the following mnemonies:

OR AND XOR ADD SM SD L.D

For readability, the mnemonic LD has been defined as identical to LDX ,
the load from index register, for use in assembling "load immediate"
instructions,

To use both modifiers together, you could declare:
0 # +C ADD

which assembles an instruction to add the carry to the accumulator. (I'his
is can be used to propagate the carry from a low-order byte to a
high-order byte.)

1.4 TRANSFERS
Program control is effected by the words:

BEGIN ... END

¥ ... ELSE ... THEN
BR

NEXT

NEXT is defined as IF SEP . Register F (decimal 15) contains the address of
the inner interpreter. All CODE words should return control to the inner
interpreter by ending with NEXT or a macro that asseinbles NEXT , such as
PUSH (discussed below).

The words IF , ELSE , and END assemble short (two-byte) branch
instructions (instructions 30 through 3F). II' and END should cach be
preceded by one of the condition codes enumecrated in the following table, The
branch is taken if the condition is not met.

microlFORTII TECHNICAI, MANUAL Page A - 3

Mnemonic Condilion

Q Test for Q sel

0= Test for acceumulator zero

DL Test for accumulator cacry flag (DF) set

< Test for accumulator borrow (DI' reset)

0< Test for sign bit of accummulator on (destroys
accumulator)

n LEIL Test for external flag number n set (n = 1 - 4)

If any of these conditions is followed by NOT', the condition is reversed. Tor

example, < is defined as DFL NOT .

Since the program control words all assembie short branches, the source and
destination of a branch must be on the same page. This can be guaranteed by
the word PAGE , which advances the dictionary to the start of the next page
if there arc not as many bytes left in the current page as the number on top of
the stack. To determine how many bytes are needed, count eight for the
dictionary entry and add the number of bytes up to and including the last BR ,
END or the first byte after ‘THEN . Bach immediate instruction requires two
bytes, as does each IF , ELSE , END , and BR .

For example, the definition of ERASE is:

13 PAGE

CODE ERASE 2POP BEGIN BEGIN O0#LD A STR A INC

T DEC T GLO 0= END T GHI 0= END NEXT

In this case the count extends to the second byte of the second 0= END .
The COSMAC's long skip instructions are occasionally useful for conditionally
skipping over the following byte. The mnemoniec LS is used to generate a
long skip and is preceeded by the condition code for the test. The generated

instruction will skip whenever the condition is met,

The code P INC may be used to assemble an unconditional skip.

1.5 CODFE BEGINNING WORDS

Al the start of a code definition it is frequently useful to take parameters from
the stack, place them into the A and/or T registers, and increment the
stack pointer. Since this is a rather tedious excrcise on the COSMAC, the
microFORTH assembler includes code beginnings (i.e., sharing of the entry
pointer) which will automatically take items off the stack and place them into
the registers. This can greatly reduce instruction overhcad in a code
definition.

To implement these code beginnings, however, it was necessary lo reverse the
use of the W and P registers (the currently executing word pointer and the
program counter, respectively). When a code definition uses a code beginnning,
the program counfer is placed in W and the currently executing word pointer
is placed in I’ , P becomes a seraleh register (instead of the usual W). A
no-op instruection, then, is no longer P SKEP but W SEP in any code
definition that uses a code beginning. 'These two registers weve switched so
that. W can be declared as the program counter (which means that the code

mieroFORTH FTECHNICAL MANUAFL Page A - 4

beginnings will return you to your code definition npon completion,
The code beginnings are:

BINARY
2pOop
1pOP
PUT

Each will be discussed in terms of the following two items: 1) stack pointer
result and 2) registers used.

The BINARY code beginning increments the stack pointer by three bytes (a
pop operation) and leaves it pointing to the low-order byte of what was the
second stack item. The code may then conveniently place an item (a PUT
operation) on the stack. The stack pointer is placed in the index register. In
BINARY, the high-order part of the top stack item is placed in the high-order
byte of the T register., The low-order byte of the top stack item is placed in
the low-order byte of the accumulator.

The PUT code beginning increments the stack pointer by one byte so that a
value may replace the current top stack item. In PUT , the top stack item
(sixteen bits) is placed in the T register. The low-order byte of ‘I' is also
in the accumulator.

The 2POP code beginning increments the stack pointer by four bytes. The top
stack item is placed in the T register and the second stack item in the A
register. The low-order byte of A is in the accumulator.

The 1POP code beginning increments the stack pointer by two bytes. The top

stack item is placed in the A register. The low-order byte of A is in the
accumulator,

1.6 MACROS - EXTENDING THE ASSEMBLER

Since the mnemonies are defined as executable instructions, they can be
compiled into colon definitions that will function as macros. The following
examples are part of standard microFORTH; you may wish to write others. The
macro DST is defined as:

: DST DUP DEC STR ;
Another useful macro is:

: 0#LD F GHI ;

which makes use of the fact that the high byte of Register ' is always zero.
The macro:

: PUSH S DST NEXT ;

may be used to push the accumulator onto the stack and return to the inner
interpreter,

microFORTII TECHNICAI. MANUALIL Page A - 5

1.7 USE OF THE ALLOCATED REGISTERS

The Registers S and R are used to contain, respectively, the address of the
top byte of the parameter stack and the rclurn stack (top byte equals lowest
address}. Any CODL words which manipulate these stacks must be careful to
readjust the pointers before returning to NEXT .

Register U contains the starting addrvess of the user arca. The defining word
USER is used to name locations relative to the start of the user area. When a
USER variable is invoked, this rclative address is added to the low-order byte of
U and the result (ineluding the high-order byte of U) is placed on the stack.
There is no carry from low-order Lo high-order byte, so thc user area canunot
eross a page boundary.

Registers | and W are used by the inner interpreter. The heart of the
interpreter is:

I LDA W PlIl [LDA w PIL.O
W LDA P PIH1 W LDA P PLO

followed by P SEP . Here it is assumecd that 1 is pointing at an address
that is compiled into a colon definition. The first phrase transfers this address
to W while advancing I . W now contains the address of the code address
of the word to be executed. The second phrase moves the code address to P .

The user will not normally want to alter I , since this will alter program flow
after returning to NEXT ., This is not true, however, for W , since W can
usefully transmit the starting address of the parameter field of the word being
executed., Consider, for cxample, the definition of CVARIABLIL :

¢ CVARIABLE USER ;;CODE W GLO S DST W GHI PUsSH
Using CVARIABLE , we define CVAR :

0 CVARIABLE CVAR
Now when CVAR is invoked the code following the ;;CODE in the definition
of CVARIABLE will be executed. This code nust put the address of the

parameter field of CVAR on the stack. This is done easily by transfering W
to the top of the stack.

1.8 INTERRUPT HANDLING

The COSMAC provides only onc level of interrupt. When an interrupt occurs,
the P and X registers arc saved in a special rvegister (T), then P is sct
to one and X is set to two. Consequently, Register 1 musl contain the
address of the interrupt handler, Note that setting X to two means that it
contains the register designated by mieroFORTH lo point to the top of the
return stack.

Sinee eertain FORTH words (1, TL.OOP , +LOOP) temporarily point R away
from the top of the return stack, you can notl reliably save T there., Instead,
we suggest that some other free register (i.e., 5 - 8) be initialized to point to a
save arca. In the interrupt handler, use a SEX instruction to designate this
register as X prior to a SAV (78) to save T . The interrupt handler
should also save the accumulator and carvy bit, if thesc will be altered, plus any
registers needed by the handler.

microFORTII TECHNICAL MANUAL Page A - 6

After processing the interrupt, execution must be resumed where it Ieft off at
the time of the interrupt. Also, the starting address of the interrupt handler
must be put back into Register 1. This is conveniently done by branching to a
RET instruction (70) in the byte just prior to the entry point of the interrupt
handler. Of course any other restoration, such as of registers, accumulator, or
carry, must be done first.

1.9 TIMING CHART

The next page features a list of operators and the number of instructions it
takes to implement them, including the count for NEXT . The execution time
of a CODE word can be found by adding the number of its instructions,
including the branch to NEXT , plus ten for NEXT's execution time.

The execution time of a word defined by a ;CODE defining word is computed
similarly, as the time of the code phrase in the definition of the defining word.

To obtain the execution time of a colon definition, add the times of its
components, plus twenty-one and fifteen, for entry and exit. For example, the
execution time of:

: ROT <R SWAP R> SWAP ;
is:

21 + 19 + 28 + 19 + 28 + 15 = 130
The execution time of a word defined by a DOES> defining word is the sum of

the times of the phrase DOES> through ; inclusive in the definition of the
defining word.

microFORTH TECHNICAL MANUAT 8/29/178 Page A - 7

TABLE A-1. TIMING CHART

WORD NUMBER OF INSTRUCTIONS
NEXT 10
EXECUTE 1
8 bit literal 19
16-bit literal 20
DO 29
LOOP 36 if loop terminates,
43 if loop is repeated
+LOOP 37 if loop terminates,
44 if loop is repeated
IF and END 18 if condition is true,
25 if condition is false
ELSE and WHILE 19
RAM VARIABLIS, 17
CVARIABLZEs,
and TABLEs
CONSTANTS, 19

PROM VARIABLEs,
and CVARIABLEs

USERs 19
DOES> 27
: 21
5 15
AND 22
+ 22
- 21
U 106 to 114
u/ 119 to 127
MOVE 26 + (6 * count)
+ (2 * [count/256])
pup 19
DROP 13
SWAP ’ 21
OVER 26
Q 23
f 21
+! 22
Cca 21
03! 19
0= 20 if true, 21 if false
0 < 18 if true, 20 if false
<R 19
R> 19
I 20
2P0OP 9
1POP 5
BINARY 6

PUT S

microFORTH TECHNICAL MANUAL Page A - 8

1.10 USER AREA MAP

Offset Name

0 -4 Reserved for multiprogrammer
5 S0

7 BASE

8 H

A CONTEXT
C CURRENT
E STATE

F BLK

10 IN

12 OFFSET
14 SCR

16 R#

18 MODE

APPINDIX B
GLOSSARY

microFORTH on the RCA COSMAC

FORTH, Inec,

WORD

#

1C

0#LD

0<

1POP

IRG

2P0OP

ALU

AND

BINARY

20 August 1978 Page 1
COSMAC GIOSSARY
VOCABULARY SCREEN STACK: IN OUT

ASSEMBLER 6 0 0
Sets the immediate bit in the user variable MODE , for use by
the instruction mnemonic.

ASSEMBLER 6 0 0
Sets the carry bit in the user variable MODE , for use by the
instruction mnemonic.

ASSEMBLER 1 0 0
Sels the accumulator to the value 0. Loaded from high-order
Register 15,

ASSTMBLER 8 1 0
A macro that tests for the sign bit in the acecumulator. When
executed, the contents of the accumulator are destroyed.

ASSEMBLER 8 0 0
A constant that will set the 0= condition code.
ASSEMBLER 20 1 0

Pops the top stack item into the A register. The stack
pointer is incrementcd by two bytes. The low-order A
register remains in the accumulator. A code beginning.

ASSEMBLER 6 1 0
Creates a "one-argument class" instruction mnemonic.

ASSEMBLER 20 2 0

Pops the top stack item into the T register and pops the
second item on the stack into the A register. The stack
pointer is ineremented by four bytes. The low-order A
register remains in the accumulator. A code beginning.

ASSEMBLER 8 0 0
Sets the condition code for DF reset (i.e., a borrow).

ASSEMBLER 6 0 0
A constant that declares A to be Register 10, a scratch
register.

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER 6 1 0
Creates an "arithmetic/logical class" instruction mnemoniec.

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSFMBLER 20 1 0

Pops the high-order byte of the top stack item into the high-
order byte of Register T and pops thc low-order byte of the
top stack item into the accumulator. The stack pointer is
ineremented by threc. A codec beginning.

FORTH, Inec.

WORD

BR

DEC

DFL

DST

EI'LL

ELSE

END

ENTRY

GUT

GLO

IF

20 August 1978 Page 2
COSMAC GIOSSARY
VOCABULARY SCREEN STACK: IN OUT

ASSTMBLER 8 1 0
Given an address, asscmbles a short unconditional branch to
that address.

ASSEMBLER 6 1 0
Instruetion mnemonic.
ASSEMBLER 8 0 0
A constant that will set the DF (carry flag sct) condition
code.
ASSEMBLER 7 1 0

A macro that decrcments the specified register, then stores
the contents of the accumulator at the address given by
the register.

ASSEMBLER 8 1 0
Will set a test for the "external flag set" in the instruc-
tion, The value on the stack is the flag number (1--4).

ASSEMBLER 8 1 1
Assembles a short unconditional forward branch. Completes
the branch whose address is on the stack and leaves its own
address.

ASSEMBLER 8 2 0
Given a condition code on top of the stack and an address
beneath, assembles a short conditional branch to the

address.

ASSIEMBLER 1 1 0

Declares a word such that, when invoked, its value is placed
in HERE 2 - . “The new word can only be executed under

the ASSEMBLER vocabulary and at the beginning of a CODE
definition.

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER 6 1 0
Instruction mnemonie.

ASSEMBLER 6 0 0
A constant that declares I , the inner interpreter pointer,
to be Register 12.

ASSEMBLER 8 1 1
Given a condition code on the stack, assembles a short
conditional forward branch. Leaves the location of the
braneh on the stack; ILSE and THEN complefe the
branch on the stack.

FORTH ,
WORD

INC

INP

D

LDA

L.DN

IL.DX

LDXA

LS

NEXT

NOT

OR

ouT

PAGE

PHI

Inc.

VOCABULARY

ASSEMBLER
Instruction

ASSEMBLER
Instruction

ASSIEMBLER
Instruction

ASSEMBILUR
Instruction

ASSEMBLER
Instruction

ASSEMBLER
Instruction

ASSEMBLER
Instruction

ASSEMBLER

long skip.

20 August 1978
COSMAC GLOSSARY

SCREEN

6

mnemonic.

6

mnemonie.

6

mnemonic .,

6

mnemoniec.

6

mremonic.

6

mnemoiiic.

6

mnemonic.

8

Skips

Page 3

STACK: IN our
1 0
1 0
1 0
Same as LDX .
1 0
1 0
1 0
1 0
1 0
Given a condition code on the stack, assembles a conditional
on condition true.
0 0

ASSEMBLER

Sets Register 15 to be the program counter.

7

Register 15

contains the address of the inner intevpreter. A code
ending.
ASSEMBLER 20 1 0
Reverses the value of the condition code on the stack.
ASSEMBLER 6 1 0
Instruction mnemonic.
ASSEMBLER 6 1 0
Instruction mnemonic.
ASSEMBLER 6 0 0
A constant that declares P , the program counter, to be
Register 3.
FORTH 4 1 0

Verifies that there are enough bytes on the current page in
memory to contain the number of bytes specified by the top

of the stack;

Usage: f{fibytes PAGE
ASSEMBLER 6

Instruetion mnemonic.

otherwise advances H

to the next page.
{new definition)

1 0

FORTH,
WORD

P1.O

PUSH

PUT

REQ

RET

SAV

SD

SEP

SEQ

SEX

SHII

SHR

[ne.

20 August 1978
COSMAC GLOSSARY

Page 4

VOCABULARY SCREEN STACK: IN OouT
ASSEMBLIER 6 1 0
Instruction mnemoniec.

ASSEMBLER 7 0 0

A macro that decrements the stack pointer and pushes the
contents of the accumulator onto the stack before perform-

ing NBXT A code ending.
ASSEMBLER 20 1 1
Pops the top stack item into the T registcer and leaves the

stack pointer positioned to the low-order byte of the top
of the stack. The low-order T remains in the accumula-

tor., A code beginning.
ASSEMBLER 8 0 0
A constant that will set the Q condition code.
ASSTMBLER G 0 0
A constant that declares R , the return stack pointer, to be
Register 14,
ASSEMBLER 6

Instruection

ASSEMBLER
Instruetion

ASSEMBLER

A constant that declares
be Register

ASSEMBLIR
Instruction

ASSEMBLER
Instruetion

ASSEMBLER
Instruction

ASSEMBLER
Instruetion

ASSEMBLER
Instruction

ASSEMBLER
Instruetion

ASSEMBLER
Instruection

mnemonic.

6
mnemonic.

6
13.

6
mnemonic.

6
miemonice,

6
mnemoniece.

6
mnemonic.

6
mnemonie.

1]
mnemonic,

6
mnemonic.

the parameter stack pointer,

FORTH, Inec.

WORD

SM

STR

STXD

THEN

U

VANI SH

w

XOR

20 August 1978 Page §
COSMAC GLOSSARY
VOCABULARY SCREEN STACK: IN OuUt

ASSEMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER 6 1 0
Instruetion mmnemonic.

ASSTIMBLER 6 1 0
Instruction mnemonic.

ASSEMBLER 6 0 0
A constant that declares 1 to be Register 9, a scrateh
register.

ASSTMBLER 8 1 0
Sets the address of a short conditional forward jump in the
dictionary.

ASSTMBLER 6 0 0
A constant that declares U , the user pointer, to be
Register 4.

FORTH 4 0 0
Removes the entire ASSIMBLER vocabulary from memory.
ASSIMBLE LOAD will restore the ASSEMBLER vocabulary in
memory .

ASSEMBLER 6 0 0
A constant that declares W , the current word pointer, to be
Register 11,

ASSEMBLER 6 1 0
Instruction mnemonic.

APPENDIX C

microFORTH GLOSSARIES

This glossary includes all words, definitions, and screen assignments that are
common to all CPUs. Because of the flexibility of the FORTH language,
however, you may find a few exceptions on your diskette. These will have been
caused by our programmers' making improvements to the microFORTH system
you have received.

Please check your microFORTH screens, therefore, when you want to verify that
words (especially in the lower-numbered screens) exist in the same screens as
listed here. This would also be an excellent time for you to begin building an
application glossary for use by your staff.

Within this glossary there are also a few words whose exact behavior varies from
chip to chip because the implementation of each is machine dependent. The end
behavior of these words, however, is the same on all machines; the most obvious
variations of implementation occur in M* and M/MOD . They are used by
*/ /MOD ¥*MOD and MOD . Do not use M* and M/MOD unless
you understand exactly how these words inodify the stack pointer on your
particular CPU, Use */ /MOD */MOD and MOD to perform the
appropriate arithmetic.

Appendix B contains words associated with assembly language and thus dependent
on your type of development hardwarc. For details concerning the mnemonics,
see Appendix A.

Short glossaries for the microFORTI vocabularies that pertain only to Options
(sueh as Extended-Precision Math or File Management) are provided with the
options when the number of words warrants it.

The order followed here is that of the ASCII character codes.

FORTH, Ine. 20 August 1978 Page 1
MICROFORTH GLOSSARY
WORD YOCABUILLARY SCRLELEN STACK: IN OUT

! FORTH 0 2 0
Stores the second number on the stack into the address which
is on the top of the stack. For example, if VALUE is a
VARIABLE , then 32767 VALUE ! changes VALUE to 32767.

" EDITOR 14 0 0
Used to enter a line of text into PAD; the text is
terminated by the dclimiter "
Usage: " OTEXT" 1 1
This example inserts TEXT in Line 2 of the current screcn.

I'ORTII 12 1 1
Converts the least significant digit of a 16-bit binary number
to its ASCII equivalent using the current BASE. The ASCII
character is placed in the output string.

#> FORTH 12 | 2
Terminates the pictured numeric output, leaving the byte count

of the string on top of the stack and its address beneath
for TYPE

#LEFY EDITOR 21 0 1
Computes the number of characters remaining in the source
text Iine.

#S FORTH 12 1 1
Converts any remaining digits of a 16-bit binary number on the
stack to their ASCII equivalents, using the current BASE.
The ASCII characters are placed in the output string. At
least one digit will be converted if the number is zero.

! FFORTH 11 0 1
Places the address of the parameter field of the next word in
the current input stream onto the top of the stack.
Searches first the CONTEXT vocabulary, then the CURRENT
vocabulary, before giving an error message.

'S FORTH 10 0 1
Places the address of the top of the stack on the stack,
i.e., the address of the top of the stack before 'S was
invoked,

(FORTH 3 ¢ 0
Begins a comment, which is terminated by) . Comments are
ignored by the system and may appear inside or outside a
definition. They may not, however, cross an even line
boundary in source text screens,.

(.) FORTH 12 1 2
Converts a sixtecen-bit signed number on top of the stack to
its ASCII equivalent, lecaving the byte count of the string
on the top of the stack and its address beneath for TYPE
Used by . (i.e., dot).

FORTH, Inc.

WORD

(MARK)

(MATCII)

(MATCH)

(MOVLE)

(NUMBER)

('THEN)

*/

* /MOD

- !

+ LOO P

20 August 1978 Page 2
MICROIFORTH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTII 9 1 0
Compiles a backward jump in a logical structure.

FORTII 29 4 2
Usage: string-A count string-B count (MATCII)
Counts must be <256. Searches for the 1lgt occurrence of A in
B. Returns the end byte plus 1 of the mateched string in B
and a truth value: zero if no match and non-—-zcvo if mateh,

EDITOR 22 4 2
In the EDITOR vocabulary on COSMACs only. DBehaves like the
FORTII vocabulary (MATCII)

IFORTH 22 3 0
Only exists on 6800s and COSMACs; in the EDITOR vocabulary on
COSMACs. Same as MOVE except there is an intermediate
move to IIERE

FORTH 10 1 2

Samec as NUMBER except that the ASCII string may begin with a
minus sign., Also, if the terminating character is not a
space, (NUMBER) will exit with an error message. The top
of the stack is either the terminator or garbage.

FORTH 9 1 0
Completes a forward jump in a logical structure.

FORTH 5 2 1

Performs an unsigned multiply of the low-order byte of the top
number on the stack with the sixteen-bit number beneath it,
leaving a sixteen-bit product,

FORTH 6] 3 1
Multiplies the second and third numbers on the stack, then
divides by the top number, leaving the quotient on top
of the stack. This is an unsigned opcration with a
twenty-three-bit intermediate result.

FORTH 5 3 2
Multiplies the second and third numbers on the stack, then
divides by the top number, leaving the quotient on top of
the stack and the remainder beneath. This is an unsigned
operation with a twenty-three-bit intermediate result.

FORTH 0 2 1
Replaces the two numbers on the stack by their sum.

FORTH 0 2 0
Increments the sixteen-bit word whose address is on the top of
the stack by the amount in the second word of the stack.

FORTH 0 1 0
Terminates the range of a DO ... LOOP. Increments the index
by an unsigned sixteen-bit number on top of the stack,
removing the number. The loop is terminated if the new
index equals or exceeds the limit (unsigned compare).

FORTH, Inc,
WORD

+1.00P

~-pup

~MOVE

~TRATLING

/MOD

0<

20 August 1978 Page 3
MICROFORTH GILOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTII 9 1 0
Defines the compile-time behavior of +],00P

FORTH 0 1 0
Places the sixteen-bit value on top of the stack into the next
dictionary position (at IIERE) and advances I by two.

FORTH 0 2 1
Subtracts the top stack item from the second stack item,
leaving the difference on the stack.

FOR'TH 0 0 2
Returns a nonzecro value if the next word in the current input
stream cannot be found in the dietionary, and 0 if it can
be found. If the word is found, the second item on the
stack is the address of the word's parameter field.

I'ORTH 3 1 2
Reproduces the top of the stack only if it is non-zero.

FORTH 22 3 0

Same as MOVE ecxcept that the count must be less than 256 and
the block of memory is moved in reverse order, beginning at
its highest address. (8080s and 280s only.)

FORTH 13 2 2
Reduces the byte count on the top of the stack by the number
of trailing blanks found in the string whose address is the
second item on the stack.

FORTH 12 1 0
Outputs a signed sixteen-bit number from the top of the stack.

FORTH 13 2 0
Outputs the second number on the stack, right-adjusted in a
field whose width is specified on the top of the stack.

I*ORTH S 2 1
Unsigned division of the second word (full sixteen bits) of
the stack by the top (max value 128), leaving the quotient
on the top of the stack.

FORTH 5 2 2

Performs an unsigned division of the second stack item by the
first, leaving a quoticnt on the top of the stack and a
remainder beneath.

I'ORTH 0 1 1
If the top stack item is less then zero, replaces it with
onc; leaves zero otherwise.

IFORTH 0 1 1
If the top stack item equals zero, replaces it with one;
leaves zero otherwise.

FORTII, Inec.

WORD

1+

1LINE

(-}
*

2 -}

g%

s CODR

; CODE

<#

<BU1LDS

20 August 1978 Page 4
MICROTORIH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FfORTH 0 1 1
Adds one to the top stack item.

EDI'TOR 21 0 1
Given a string in PAD, searches for the string in the current
line. kLeaves zcro if the string is not found and one if it
is. ILeaves the cursor positioned at the end of the mateched
string or at the end of line if not found.

FORTII 0 1 1
Doubles the value of the top item on the stack.

FORTH 0 1 1
Adds two to the top stack item,

FORTH 3 1 1
Multiplies the top value on the stack by cight.

FORTH 0 0 0
Creates a dictionary entry for the word following : . Puts
the interpreter into compile mode,

FORTH 0 0 0
Terminates a : definition. Toggles the user variable
STATE
FORTH 4 0 0

Ends the creation portion of a new defining word and begins
the code portion (run-time behavior) of it.

FORTH 0 0 0
When executed, sets the codec address of the new wod to point
to the code that follows ;CODE

FORTII 0 0 0
Ends the loading of any sereen in which ;S 1is exccuted.
Within a definition causes an cxit to the next outer
definition.

FORTH 0 2 1
If the second stack item is less than the top, replaces the
top two items on the stack with one, zero otherwise.
This is a limited signed compare. Equivalent to - 0 <.

I'ORTH 12 0 0
Begins picturcd numeric output. Sets IILD to PAD.
sixteen-bit binary number must be on the stack.

FORTH 3 0 0
Begins the compile-time behavior of a new "high-level”
defining word. Defined as 0 CONSTANT ; used with DOES >.

FORTH, Ine.
WORD

<R

78TACK

(@)

ABS

AND

ASSEMBLE

ASSEMBLER

AT

20 August 1978 Page 5
MICROFORTH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTH 0 1 0
Removes the top item on the parameter stack and places it on
the top of the return stack.

FORTIH 0 2 1
If the top two stack items are equal, replaces them with one;
leaves zero otherwise,

FORTII 5 2 1

I[f the second item on the stack is grecater that the top item,
replaces both with one; leaves zero otherwise. This is
a limited signed compare. Equivalent to SWAP - 0<.

FORTH 12 1 0
Outputs the contents of the word address which is on the top
of the stack. Equivalent to @ . (dot).

FORT1I 10 0 0
Checks for stack underflow and overflow and issues an crror
message if appropriate.

FORTH 0 1 1
Replaces the address on the top of the stack by the contents
of the two-byte word at that location.

EDITOR 14 1 0

In the current screen, adds the line of text that follows A
AFTER the linc number given. Line 15 is lost. The added
line remains in PAD.

FORTH 5 1 1
Replaces the top stack item with its absolute value.

FORTH 0 2 1
Performs the logical sixteen-bit AND operation on the top
two stack items.

FORTH 9 0 1
For COSMACs only, a constant whieh gives the load screen of
the ASSEMBLER vocabulary.

FORTH 0 0 0
Sets CONTEXT to the ASSEMBLER vocabularvy.

EDITOR 21 1 1
Calculates the physical address in memory of the current
cursor position within the current screen.

EDITOR 21 0 0
Positions the cursor in front of the string just found. Used
in conjunction with I

FORTII, Inea,

WORD

BACKUP

BASE

BEGIN

BLANK

BLK

BLOCK

BUFFER

C!

C#

20 August 1978
MICROFORTH GLOSSARY
SCREEN STACK: IN OUT

Page 6
VOCABULARY

DISKING 24 0 0
Copies an cntive diskette from Drive 0 to Drive 1.

FORTH 0 0 1
A user variable that contains the radix for number conversions
on input or output., It is one byte long and is used with
Ca and C!

[FOR'IT] 9 0 1
Marks the beginning of an indefinite loop which is terminated
by END Leaves its address on the stack.

FORTII 22 2 0
Given an address in the second stack position and the byte
count (<256) on top, stores blanks into that region of
memory. Also in the EDITOR vocabulary.

FORTH 0 0 i
A user variable that contains the number of the block
being interprected during a LOAD ., If BLK contains zero,

input is from the terminal. Overlaps the user variable
IN
FORTH 3 1 1

Replaces the block number on the top of the stack by the
starting address of its block buffer in memory, adding in
OFFSET .

FORTH 0 0 1
Returns the address of the bloek ID of a free bloek buffer.
The ID resides two bytes before the beginning of the block
opuffer,

EDITOR 21 0 0

Inserts the string that follows C
beginning at the current cursor position,
(at the end of the line) will be lost,

into the current line,
Extra characters

FORTH 0 2 0
Stores the eight-bit value in the low-order byte of the second
item on the stack into the address on the top of the stack.

EDI'TOR 21 0 1
Calculates the character position of the cursor in the
curvent line,

FORTH 0 1 0
Places the low-order byte of the top of the stack into the
next dictionary position at HERE and advances [I by one.

FORTH 0 1 1
Replaces the address on the top of the stack with its con-
tents. The high-order byte is zero filled.

FORTH, Inc.

WORD

CODE

COMPILE

CONSTANT

CONTEXT

COPY

COUN'Y

CR

CREATE

CROSS

CURRENT

CVARIABLE

C7

20 August 1978 Page 7
MICROFORTIH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTH 4 0 0
Begins a dietionary entry for the word following it and cnters
the ASSIEMBLER vocabulary.

FORTH 0 0 0
Changes the user variable STATE ; used by : and ;
(Changes the name field in the dictionary entry. The byte
changed is machine-dependent.)

IFORTH 0 1 0
A defining word which creates a dictionary entry for a
sixteen-bit value. When the name is invoked, the value is
placed on the top of the stack.

FORTH 0 0 1
A uscr variable whose contents point to the vocabulary in
which scarches begin.

IEDITOR 14 2 0
Copies one screen to another, The source secrcen is
unchanged. Usage: source-screen destination-scereen COPY

FORTI1I 15 1 2
Takes the address of a character string whose first byte is a
character count and replaces it with a character count on
top of the stack and the address of the first character
beneath. In Screen 16 on COSMACs.

FORTH 12 0 0
Sends a carriage return and line feed to the terminal.

FORTH 0 0 0
When executed, creates a dictionary header for the word that
follows it. Used in the definition of all defining words.

FORTH 19 0 1
A CONSTANT that places the load sereen number of the cross-
compiler on the top of the stack.

FORTII 0 0 1
A user variable whose contents point to the vocabulary in
whiech new definitions are added. The CURRENT vocabulary
is searched when the search of the CONTEXT vocabulary
ends.

FORTH 4 1 0
A defining word which creates a dictionary entry for an
eight-bit value. When the CVARIABLE name is invoked, the
address of the value is placed on the top of the stack.

FORTH 0 0 1
Places one byte of zero on the stack. Increments the stack
pointer by one bytec.

FORTH, Ine.

WORD

D

DECIMAIL

DEFINITIONS

DELETE

DEVICE

DISKING

DOLS >

DOWN

PRO

DR1

DROP

20 August 1978
MICROVFORTH GLOSSARY

Page 8

VOCABULARY SCREEN STACK: IN OUT
EDITOR 14 1 0
In the current screcn, deletes the line specified on the top

of the stack and places it in PAD. Succeeding lines are

moved up; Line 15 is duplicated.
FORTII 5 0 0
Sets BASE to radix ten for number conversion.
FORTH 11 0 0
Sets CURRENT to CONTEXT. Used to specify the vocabulary in
which definitions will be entered.
EDITOR 14 1 0

Stores sero into the first two bytes of thec specified screen

to mark the screen as unused. This screen then will not be
listed by INDEX , SHOW , or TRIAD in the PRINTING
utility.
PRINTER 17 0 0
Marks the load point for the PRINTER vocabulary. (Not avail-
able on COSMACs.)
FORTH 19 0 1
A CONSTANT that gives the load screen number of the DISKING
utility.
FORTLI 9 0 0
Defines the compile-time behavior of DO
FORTH 0 2 0
Begins a finite loop whose index (the top stack item) and
limit (the second stack item) are moved to the return stack

when it is invoked.

FORTH 0 0 0
A defining word which marks the beginning of the run-time

portion of a new defining word. Used with <BUILDS
DISKING 24 2 0
See RIGHT
FFOR'TH 19 0 0
Sets the user variable OFFSET' to zero for absolute access
by BLOCK and LIST .
FORTH 19 0 0
Sets the user variable OFFSET to 2000 for relative access to
Drive 1 by BLOCK and LIST
FORTH 0 1 0

Removes the top item from the stack.

FORTH, Inec. 20 August 1978 Page 9
MICROTFORTH GLOSSARY
WORD VOCABULARY SCREEN STACK: IN OUT

DUMP FORTH 13 2 0

Outputs the values contained in a specified region of memory.
Usage: start-addr count DUMP

pup FORTH 0 1 2
Duplicates the top of the stack.

ECHO FORTII 15 1 0
Sends the character in the low-order byte of the top stack
item to the terminal,

ECHO PRINTER 17 1 0
Sends the character in the low-order byte of the top stack
item to the printer device. (Not available on COSMACs.)

EDIT FORTH 19 0 1
A constant that is the load sereen number of the EDITOR
vocabulary. Ior COSMACs only.

EDITOR ¥ORTH 14 0 0
Sets CONTEXT to the EDITOR vocabulary. It is [IMMEDIATE
so that it may be invoked inside a definition.

ELSE FORTH 0 1 1
Used within the IF ... THEN structure, ELSE begins the
"false" part. The words that follow ELSE are executed
if the top stack item was zero (false) when IFF was
invoked.

ELSE FORTH 9 0 0
Defines the compile-~time behavior of ELSE

END FORTH 0 1 0
Terminates an indefinite loop started with BEGIN ., Returns
to the start of the loop if the top stack item is zero
(false); terminates the loop if the top stack item is
non-zero (true). (Not available on 6800s.)

END FORTH 9 0 0
Defines the compile-time behavior of END

ERASE FORTH 4 2 0
Given the byte count on top of the stack and the address
benecath, stores zeros in a region of memory.
Usage: start-adr. count ERASE

ERASE--CORE FORTH 3 0 0
Stores zeros in all the block buffers., Does not write to disk
any block buffers marked for writing.

ERR FDITOR 21 1 0
Uses the error condition code on top of the stack; if true,
moves text from PAD to HERE and invokes 0 QUESTION

FORTH, Ine.

WORD

ERROR

EXLECUTLE

EXPECT

FILI,

FIND

FLUSII

MT

FORGET

FORTH

GAP

H

20 August 1978 Page 10
MICROFORTH GI.OSSARY
VOCABULARY SCREEN STACK: IN OUT

DISKING 26 0 1
LLeaves the value of STATUS maskced for error bits.

FORTH 0 1 0
Executes the word whose parameter field address is on top
of the stack.

FORTH 16 2 0

Inputs, from the terminal, the number of characters specified
on top of the stack and places them into memory at the
address given beneath, followed by 2 nulls. The string is
ended when the count is exhausted or by a carriage return,

EDITOR 21 0 0
Beginning at the current cursor position in the current
screen, searches for the string that follows TF and leaves
the cursor positioned immediatcly after that string.
Multiple lines are searched.

DISKING 24 0 0

Sets a non-zero value into the bloek IDs of the disk block
buffers. Used to force thec operating system to read disk
Block 0 from disk.

EDITOR 21 0 0
Searches each line of the current sereen, beginning at the
current cursor position for the string in PAD . Prints
an error message if the string is not found.

FORTH 3 0 0
Forces all updated blocks to be written to disk.

DISKING 24 0 0
Formats the disk on Drive 1 (where appropriate).

FORTH 11 0 0

Physically forgets, at execute time, all dictionary entries
after and including the word specified in the current
input stream.

FORTH 11 0 0
The name of the innermost vocabulary. Sets CONTEXT to
FORTH . It is IMMEDIATE so that it may be invoked
inside a definition.

EDITOR 14 1 1
In the current sereen, pushes all Iines that occur AFTER
the specified line down one.

FORTH 0 0 1
A user variable that contains the address of the top of the
diectionary. See HERE .

FORTH, Inec.

WORD

HERE

HEX

11D

NOLD

1IOLD

IF¥

Iy

IMMED IATE

IN

IN-LINE

20 August 1978 Page 11
MICROFORTH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTIH 0 0 1
Places on the stack the address of the next available
byte at the top of the dictionary. See U

FORTH 5 0 0
Sets BASIE Lo radix sixteen for number conversion.

FORTH 12 0 1
A variable that points at the most recent character of the
output string during pictured numneriec output,

EDITOR 14 1 0
Transfers the line whose number is on the top of the
stack to PAD.

FORTH 12 1 0
Decrements HLD and places an ASCII character that is on top
of the stack into the output string during pictured numeric

output. See <# , # and #>.

LD ITOR 14 1 0

In the current screen, inscrts the line that is stored in
PAD into the line that follows the one whose number is
on top of the stack. Succeceding lines are pushed down;
Line 15 is lost.

FORTH 0 0 1
Copies the top of the return stack onto the parameter stack;
it does not alter the return stack.

FORTH 0 1 0

Begins a conditional structure. Executes the words that im-
mediately follow I when the top of the stack is true
(non-zero); otherwise skips to ELSE (if present) or THEN
(if there is no ELSE) or WHILE (instead of THEN).

FORTH 9 0 1
Defines the compile-time behavior of IF .,

FORTH 3 0 0
Marks the word most recently defined as a compiling word.
The word is executed when encountered inside of a
definition.

FORTH 0 0 1
A user variable that points to the relative location in the
input stream. IN overlaps the user variable BLK

FORTH 11 1 0
Given a number on the top of the stack, compiles it as a
sixteen-bit literal.

FORTH, Inec.

WORD

IN~LINE

INC

INDEX

INTERPRET

KEY

L#

LEAVE

LEFT

LF

LINE

20 August 1978 Page 12
MICROFORTH GLOSSARY
VOCABULARY SCREEN STACK: IN OUYT

FORTH 0 0 1
Puts a sixteen-bit literal on the stack at run time.

DISKING 24 0 1
A constant that gives the block inercment for RIGHT and
SWEEP . Must be an odd number.

PRINTING 27 2 0
Types the first line of each screen in the range given, sixty
Iines to a page. The copyright and heading are at the
base of cach page.
Usage: start-screen#f end-sereen# INDEX

FORTH 0 0 0
Outer interpreter loop; scans and scarches for a word (to be
compiled or executed, depending on STATE and precedence)
in the dictionary. If not found, converts nwnber and com-
iles literal form if in compile mode.

FORTH 4 0 1

Puts the index of the outer of two nested DO ... LOOPS on
the stack. Only the indices of the two innermost nested
loops are available. In Sereen 5 on COSMACs.

FORTII 16 0 1
Receives and places on the stack a single character from the
keyboard. In Screen 15 on COSMACs.

FORTH 13 0 0
Lists the screen specified in the user variable SCR.

EDITOR 21 0 1
Calculates the line number of the cursor in the current
screen. Implementation is machine-dependent.

FORTH 4 0 0

Sets the limit of a DO ... ILOOP cqual to zero so that a loop
will be terminated. Implementation is machine-dependent.

In Screen 5 on COSMACs,

DISKING 24 2 0
See RIGHT
PRINTING 217 0 0

Sends one line feed.

EDITOR 14 1 2
Given the number of a line in the current screen on the top of
the stack, rcturns a character count of sixty-four (on top)
and the address of the line beneath The line number is
masked by fifteen.

FORTH, Inc.
WORD

LINE

LIST

LOAD

LOOP

LOOP

M *

M/MOD

MATCH

MESSAGE

20 August 1978 Page 13
MICROTORTIH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTH 13 2 2
Given a line number beneath and a sereen number on top of the
stack, calculates the block address with a count of 64 on
the top of the stack. Can be used by 7TYPE or MOVE

FORTH 13 1 0
Lists the screen whose number is found on the top of the
stack and places the sereen number in SCR

FORTI 3 1 0
Begins interpretation of source text in the screen whose
number is on the top of the stack.

DISKING 26 1 0

L.ogs a disk error by typing the block number that is on top of
the stack, followed by the disk error message and the error
status.

FORTII 0 0 0
Terminates the range of a DO ... LOOP. Increments the index
by one and exits if the index equals or exceeds the limit.

FORTH 9 1 0
Defines the compile-time behavior of LOOP

EDITOR 21 1 0
Given a count, moves the cursor forward (positive) or backward
(negative). The line that contains the cursor is sent to
the terminal.

FOR'TH 5 2 2
Multiplies the top two values on the stack, leaving
a twenty-four-bit product. The output format is chip-
dependent, See M/MOD

FORTH 5 3 2
Divides a twenty-four-bit number by the top stack item,
leaving the remainder on top and the dividend beneath.
The input format is chip-dependent. See also M*

DISKING 25 2 0
Usage: start-screen# end-screenff-plus-1 MATCII
Compares between DRO and DR1; does not match screens if both
begin with 0. On the first mismatch, types screen# and
approximate linef#f (relative block * 2) of the mismatch,

FORTH 5 2 1
A limited signed compare between the top two values on the
stack that leaves the largest value on the stack.

FORTH 10 1 0
Types on the terminal a specified line relative to the start
of Ser. 23. Omits trailing blanks. Uses Ser. 23 as the
logical base, i.e., Message 16 is Line 0 of Ser. 24,
Message 32 is Line 0 of Ser. 25, ete,

FORTII, Inc.

WORD

MESBAGLE

MIN

MINUS

MOVE

MSG

MSG

NDB

NIEW

NOT

NOTIFY

NUMBLER

20 August 1978 Page 14
MICROFORTH GIOSSARY
VOCABULARY SCREEN STACK: IN OUT

PRINTER 1.7 1 0
Same as MRESSAGE in the TORTII vocabulary. (Not available on
COSMACs .

FORTH 5 2 1
A limited signed compare between the t(op two values on the
stack that leaves the smaller valuc on the stack.

FORTH 0 1 1
Replaces the top of the stack by its two's complement,

FORTIH 5 2 1
Divides the top stack item inlo the value beneath it, leaving
the remainder on the top of the stack.

FORTH 0 3 0
Moves a specified region of memory to another region of
memory; moves the locations with lower addresses first.
The source area remains unchanged.
Usage: source-addr. dest.-addr. byte-count MOVE

FORTH 15 0 0
Defines a word that will type out the string that follows it
in the dictionary. The string is preceded by a character

count. In Screen 16 on COSMACs.

PRINTER 17 0 0
Sets ASCII character codes into a named definition in the
dictionary. (Not available on COSMACs.)

EDITOR 21 0 0
Finds the next oeccurrence of a string (found with an [)
in the current secrecn.

DISKING 24 0 1
A constant that gives the number of block buffers.

DISKING 24 0 1
A constant that gives the first bloeck number on Drive 1.

FORTH 5 1 1
Reverses the truth value of the top of the stack,
Identical to 0=

DI SKING 26 1 1

Erases the bloeck ID in the buffer whose address is on top of
the stack after first fetching the bloek number contained
in the ID. Invokes LOG with the bloek number and returns
the number Iess the contents of OFFSET to the stack.

FORTH 0 1 2
Given the starting address less 1 of a numeric ASCII string on
the stack, converts the string to binary according to the
current value of BASE and lecaves it in the second stack
entry., The top item points to the non-numeric terminator.

FORTII, Inc.

WORD

OCTAL

OFTFSET

OK

OVIR

PAD

PRINTER

PRINTER

PRINTING

QUESTION

QUIT

R

R

20 August 1978 Page 195
MICROI'ORTH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTH 5 0 0
Scts BASLE to radix cight for number conversion.

FORTH 3 0 1
A user variable whose contents are added to block numbers in
BIOCK to detcrmine the physical block number.

FOR'TH 15 0 0
Types the characters O, K, carriage return, and line feed. In
Screen 16 on COSMACs.

FORTH 0 2 3
Copies the second item on the stack onto the top.

EDITOR 14 1 0

Places the line of text that follows P into the specified
line. The previous content of the line is lost. The
"put" line remains in PAD.

FORTH 12 0 1
The starting address of a holding buffecr, PAD resides
sixty-five bytes above HERE and moves as definitions are
added to and deleted from the dictionary.

FORTH 19 0 1
A constant that places the load sereen number of the PRINTER
utility on the stack. (Not available on COSMACs.)

PRINTER 17 0 0
Same as CR . {(Not available on COSMACs.)

FORTH 19 0 1
A constant that placcs the load screen number of the PRINTING
utility on the stack.

FORTH 10 1 0
Repcats the last word executed by the text interpreter (found
at HERE) and issues an errvor message as specified by
MESSAGE , then empties both stacks and returns control to
the operator. No OK is issued.

IFORTH 16 0 0
Empties the return stack and returns control to the
operator, No OK is issued.

EDITOR 14 1 0
Replaces the line specified on the top of the stack with the
contents of PAD,

FORTIL 4 0 1
A constant that gives the address of the return stack pointer.
For COSMACs, in thc ASSEMBLER vocabulary.

FORTH, Inc.

WORD

R!

R

R >

REMOVE

RIGHT

ROT

S0

SCR

SHOW

SIGN

SPACE

20 August 1978 Page 16
MICROFORTH GLOSSARY
VOCABULARY SCREEN STACK: [N OUT

FORTLI 16 1 0
Moves the contents of Register U to Register R (i.e., resets
the return stack). On COSMACs only.

FORTH 13 0 1
User variable which contains the character position of the
cursor in the FEDITOR. When file management is in the
system R# is the record nuwnber of the currently accessed
record,

JFORTH 0 0 1
Removes the top of the rcturn stack and places it on the
parameter stack.

EDITOR 21 1 0
Given the character position of the beginning of the string
to be deleted, deletes those characters on the line (up to
the current cursor position) and moves all characters up.
Trailing blanks are added at the end as needed.

DISKING 24 2 0

Copies the range of screen given from Drive 0 to Drive 1.
Usage: start-screen#f end-screen#-plus-1 RIGHT
May be called UP , DOWN , or LEFT .

FORTH 0 3 3
Rotates the top three stack items, putting the third stack
item on the top. On 6800s ROT resides in Sereen 5.

FORTH 10 1 0
Sets the address of the current stack pointer to the one given
on the stack.

FORTH 0 0 1
A user VARIABLE that contains the address of the bottom of

the parameter stack and the start of the input message
buffer.

FORTH 13 0 1
A user variable that holds the current EDITOR screen number.
PRINTING 27 2 0
Types TRIADs of screens in the inclusive range given.
Usage: start-screen end-screen SHOW
FORTII 12 2 1

Places a minus sign in the pictured numeric output string if
the seccond word on the stack is negative. Deletes this
second word on the stack but retains the top word.

FORLH 12 0 0
Sends a single space (blank) to the terminal.

FORTH,

WORD

SPACES

STATE

STATUS

STRING

SWAPD

SWELP

T

TASK

TEXT

THEN

I'HEN

TILL

10P

Inc.

20 August 1978 Page 17
MICROFORTH GLOSSARY
VOCABULARY SCREEN STACK: IN OUT

FORTH 12 1 0
Sends the number of spaces that is designated by the top
stack item. May send zero spaces,

FORTH 0 0 1
A user variable, one byte wide, that indicates whether the
interpreter is in compile or executc mode,

DISKING 26 0 1
Returns on the stack the disk status as of the last opervator,

EDITOR 21 0 0

Scans characters in the input stream until the delimiting
character (the low-order byte on top of the stack or a cav-
riage return) is encountered. Reads characters from the
terminal into PAD with a leading count,

FORTH 0 2 2
Exchanges the top two stack items.

DISKING 24 2 0
Reads cach sereen in the range given to check for disk errors.
Usage: start--sereenff end-screenff-plus-1 SWEEP

EDI'TOR 14 1 1
Types the line specified (on the top of the stack) of the
current serceen and transfers it to PAD. The line number
is left on the stack,

FORTH 3 0 0
Marks the beginning of the application vocabulary.

FORTII 13 1 0

Scans characters in the input stream until delimiter (low-
order byte as top stack item or carriage return) is encoun-
tered. Leading occurrences of the delimiter are skipped
over. Input is placed in PAD and is blank filled.

FORTH 0 0 0
Marks the end of an IT .., THEN structure,.

FORTH 9 0 0
Defines the compile-time behavior of THEN

EDITOR 21 0 0
Beginning at the current cursor position on the current line,
deletes all characters up to and including the string
that follows TILL

EDTTOR 14 0 0
Positions the cursor at the beginning of the current sereen.

IFORTII, Ine.
WORD

TRIAD

TYPT,

TYPE

U*

g/

ur

UPDATE

USER

VARIABLE

VOCABULARY

20 August 1978 Pgge 18
MICROFORTII GLOSSARY
VOCABULARY SCRELEN STACK: [N OUT

PRINTING 2% i 0
Types a set of threc sercens, given one scereen number. The
sereen number tmay be any of the three sercens on a page;
the top secrcen is always the screen number modulo
three. Copyright and hecading appear at page bottom.

IFORTII 15 2 0
Uscs a-character count on top of the stack and an address
bencath to send c¢haracters to the terminal. May TYPR
zero characters. In Sercen 16 on COSMACs,

PRINTER 17 2 0
Uses a characeter count on top of the stack and an address
beneath to send characters to the printer device.
(Not available on COSMACs.)

FORTII 4 0 1
A constant that gives the address of the pointer to the start
of the user arvca. For COSMACs, in ASSEMBLER vocabnlary.

FORTH 0 2 1
Unsigned multiply of the low-order bytes of the top two words
on the stack, leaving a sixtcen-bit product.

FORTH 0 2 2
Unsigned divide of the sccond word on the stack by the top
word, lceaving a quotient on top and a remainder benecath.

DISKING 24 2 0
Sce RIGHT
FORTH 0 Q 0

Marks the last buffer returned by BLOCK for writing. The
bloek is rewritten on the disk either by the next TFLUSH
or automatically when the buffer is nceded for ancther
block.,

FORTII 0 1 0
A defining word, used to namme locecations at fixed relative
addresscs within the uscr area.

FORTH 4 1 0

A defining word that creates a dictionary entry for
sixteen-bit value. When the VARIABLE name is invoked,
the address of the value is placed on top of the
stack.

FORTH 11 0 0
Defines a word whose parameter ficld plus two points to the
most recent entry of that vocabulary's set of definitions,
Executing a vocabulary name points CONTEXT to that vocabu-
lary's parameter field plus two.

FORTH, Inec.

WORD

WIIT LE

WHI L

WORD

L]

[+]

[BLOCK]

[SWAP]

cot

20 August 1978 Page 19
MICROFORTII GLOSSARY
VOCABULARY SCRELEN STACK: IN OUT

FORTH 0 0 0
Terminates an indefinite loop of the following form:
BEGIN (condition) IF WHILE or BEGIN (condition) IF LLSE WHILE
Allows a test at the beginning of an indefinite loop,
(Not avonilable on 6800s.)

FORTH 9 2 0
Defines the compile-time behavior of WHILE

FORTII 0 1 0
Recads forward in the current input strcam until the delimiter
given on the stack. The byte count and text arc stored at
HERE with the byte count in the first byte.

EDITOR 21 0 0
Beginning at the current cursor position, searches for and
deletes the string that follows X . Multiple tines are
scarched.

FORTII 13 0 0
Defines the run-time behavior of | , which types out text on
the CRT. The string resides in the dietionary, preceded by
a count, It was Jlaid down at compile time by use of the
compiling word

FORTH 13 0 0
A compiling word whieh causes the string of characters until
the delimitecr], following it to be typed when the defined
word is invoked.

FORTH 0 0 1
During compilation, pushes onto the stack the sixteen-bit
value that follows it.

FORTH 11 0 0 o
Defines the compile-time behavior of ['J

DISKING 26 1 1
Invokes DBILOCK and, in case of read errors, retries up to ten
times. Invokes LOG for all but the last retry,

FORTH 11 1 1
A compiling word which swaps the top two words of the stack
during compilation.

FORTH 0 0 0
A compiling word that places the address of the word that
follows it into a new definition. Used to help define the
run-time and compile-time behavior of a compiler word.

FORTH 0 0 0
An ASCI! null character that tcrminates scanning in the
current input stream. Null controls the scquencing of
the block buffers of a sercen.

